Phân số \(\dfrac{2}{5}\) viết dưới dạng số thập phân là:
\(\dfrac{2}{5} = \dfrac{4}{{10}} = 0,4.\)
Hỗn số \(1\dfrac{2}{5}\) được chuyển thành số thập phân là:
\(1\dfrac{2}{5} = \dfrac{{1.5 + 2}}{5} = \dfrac{7}{5} = \dfrac{{14}}{{10}} = 1,4.\)
Số thập phân \(3,015\) được chuyển thành phân số là:
\(3,015 = \dfrac{{3015}}{{1000}}\)
Số tự nhiên \(x\) thỏa mãn: \(35,67 < x < 36,05\) là:
Ta có: \(35,67 < x < 36,05\) và \(x\) là số tự nhiên nên \(x = 36\).
Phân số nghịch đảo của phân số: \(\dfrac{{ - 4}}{5}\) là:
Phân số nghịch đảo của phân số: \(\dfrac{{ - 4}}{5}\) là \(\dfrac{{ - 5}}{4}\).
Sắp xếp các phân số sau: \(\dfrac{1}{3};\dfrac{1}{2};\dfrac{3}{8};\dfrac{6}{7}\) theo thứ tự từ lớn đến bé.
Ta có: $\dfrac{1}{3} = \dfrac{6}{{18}};\;\;\dfrac{1}{2} = \dfrac{6}{{12}};\;\;\dfrac{3}{8} = \dfrac{6}{{16}}.$
Vì:$\dfrac{6}{{18}} < \dfrac{6}{{16}} < \dfrac{6}{{12}} < \dfrac{6}{7} \Rightarrow \dfrac{6}{7} > \dfrac{1}{2} > \dfrac{3}{8} > \dfrac{1}{3}$.
Vậy các phân số trên được sắp xếp theo thứ tự từ lớn đến bé là: \(\dfrac{6}{7};\;\dfrac{1}{2};\;\dfrac{3}{8};\;\dfrac{1}{3}.\)
Rút gọn phân số \(\dfrac{{ - 24}}{{105}}\) đến tối giản ta được:
\(\dfrac{{ - 24}}{{105}} = \dfrac{{ - 24:3}}{{105:3}} = \dfrac{{ - 8}}{{35}}\)
Tìm một phân số ở giữa hai phân số \(\dfrac{1}{{10}}\) và \(\dfrac{2}{{10}}\).
Ta có: \(\dfrac{1}{{10}} = 0,1;\;\;\,\dfrac{2}{{10}} = 0,2\)
Vậy số cần tìm phải thỏa mãn: \(0,1 < x < 0,2\) nên trong các đáp án trên thì \(x\) chỉ có thể là \(0,15 = \dfrac{{15}}{{100}}.\)
Tính: \(3\dfrac{3}{5} + 1\dfrac{1}{6}\) .
\(3\dfrac{3}{5} + 1\dfrac{1}{6} = \left( {3 + 1} \right) + \left( {\dfrac{3}{5} + \dfrac{1}{6}} \right) = 4 + \dfrac{{23}}{{30}} = 4\dfrac{{23}}{{30}}.\)
Tính: \(\dfrac{6}{{15}} + \dfrac{{12}}{{ - 15}}\) là:
\(\dfrac{6}{{15}} + \dfrac{{12}}{{ - 15}} = \dfrac{6}{{15}} + \left( {\dfrac{{ - 12}}{{15}}} \right) = \dfrac{{6 + \left( { - 12} \right)}}{{15}} = \dfrac{{ - 6}}{{15}} = \dfrac{{ - 2}}{5}\)
Người ta mở vòi cho nước chảy vào đầy bể cần \(3\) giờ. Hỏi nếu mở vòi nước đó trong \(45\) phút thì được bao nhiêu phần của bể?
Đổi: \(45\)phút = \(\dfrac{3}{4}\) giờ
Mỗi giờ vòi nước chảy được số phần bể là: \(1:3 = \dfrac{1}{3}\) (bể)
Nếu mở vòi trong 45 phút thì được số phần bể là: \(\dfrac{3}{4}.\dfrac{1}{3} = \dfrac{1}{4}\)(bể)
Lúc 7 giờ 5 phút, một người đi xe máy đi từ A và đến B lúc 8 giờ 45 phút. Biết quãng đường AB dài 65km. Tính vận tốc của người đi xe máy đó?
Thời gian người đó đi hết quãng đường AB là: 8 giờ 45 phút – 7 giờ 5 phút = 1 giờ 40 phút
Đổi 1 giờ 40 phút = \(\dfrac{5}{3}\) giờ.
Vận tốc của người đi xe máy đó là: \(65:\dfrac{5}{3} = 39\left( {km/h} \right)\)
Cho hai biểu thức \(B = \left( {\dfrac{2}{3} - 1\dfrac{1}{2}} \right):\dfrac{4}{3} + \dfrac{1}{2}\) và \(C = \dfrac{9}{{23}}.\dfrac{5}{8} + \dfrac{9}{{23}}.\dfrac{3}{8} - \dfrac{9}{{23}}\). Chọn câu đúng.
\(\begin{array}{l}B = \,\,\left( {\dfrac{2}{3} - 1\dfrac{1}{2}} \right):\dfrac{4}{3} + \dfrac{1}{2}\\ = \left( {\dfrac{2}{3} - \dfrac{3}{2}} \right).\dfrac{3}{4} + \dfrac{1}{2}\\ = \dfrac{{ - 5}}{6}.\dfrac{3}{4} + \dfrac{1}{2}\\ = \dfrac{{ - 5}}{8} + \dfrac{1}{2}\\ = \dfrac{{ - 1}}{8}.\end{array}\)
\(\begin{array}{l}C = \,\dfrac{9}{{23}}.\dfrac{5}{8} + \dfrac{9}{{23}}.\dfrac{3}{8} - \dfrac{9}{{23}}\\ = \dfrac{9}{{23}}.\left( {\dfrac{5}{8} + \dfrac{3}{8} - 1} \right)\\ = \dfrac{9}{{23}}.\left( {1 - 1} \right)\\ = \dfrac{9}{{23}}.0\\ = 0.\end{array}\)
Vậy \(C = 0;B < 0\)
Rút gọn phân số \(\dfrac{{1978.1979 + 1980.21 + 1958}}{{1980.1979 - 1978.1979}}\) ta được kết quả là
\(\begin{array}{l}\;\;\dfrac{{1978.1979 + 1980.21 + 1958}}{{1980.1979 - 1978.1979}}\\ = \dfrac{{1978.1979 + \left( {1979 + 1} \right).21 + 1958}}{{1979\left( {1980 - 1978} \right)}}\\ = \dfrac{{1978.1979 + 1979.21 + 21 + 1958}}{{1979.2}}\\ = \dfrac{{1978.1979 + 1979.21 + 1979}}{{1979.2}}\\ = \dfrac{{1979.\left( {1978 + 21 + 1} \right)}}{{1979.2}}\\ = \dfrac{{2000}}{2} = 1000.\end{array}\)
Cho \(x\) là giá trị thỏa mãn \(\dfrac{6}{7}x - \dfrac{1}{2} = 1\)
\(\begin{array}{l}\,\,\,\,\,\dfrac{6}{7}x - \dfrac{1}{2} = 1\\\;\;\;\dfrac{6}{7}x\;\;\;\;\;\;\; = 1 + \dfrac{1}{2}\\\;\;\;\dfrac{6}{7}x\;\;\;\;\;\;\; = \dfrac{3}{2}\\\;\;\;\;\;x\;\;\;\;\;\;\; = \dfrac{3}{2}:\dfrac{6}{7}\\\;\;\;\;\;x\;\;\;\;\;\;\; = \dfrac{7}{4}.\end{array}\)
Cho \({x_1}\) là giá trị thỏa mãn \(\dfrac{1}{2} - \left( {\dfrac{2}{3}x - \dfrac{1}{3}} \right) = \dfrac{{ - 2}}{3}\) và \({x_2}\) là giá trị thỏa mãn \(\,\dfrac{5}{6} - x = \dfrac{{ - 1}}{{12}} + \dfrac{4}{3}\) . Khi đó \({x_1} + {x_2}\) bằng
\(\begin{array}{l} + )\,\,\dfrac{1}{2} - \left( {\dfrac{2}{3}x - \dfrac{1}{3}} \right) = \dfrac{{ - 2}}{3}\\\dfrac{2}{3}x - \dfrac{1}{3} = \dfrac{1}{2} - \left( {\dfrac{{ - 2}}{3}} \right)\\\dfrac{2}{3}x - \dfrac{1}{3} = \dfrac{7}{6}\\\dfrac{2}{3}x = \dfrac{7}{6} + \dfrac{1}{3}\\\dfrac{2}{3}x = \dfrac{3}{2}\\ x= \dfrac{3}{2}:\dfrac{2}{3}\\ x= \dfrac{9}{4}.\end{array}\)
Nên \({x_1} = \dfrac{9}{4}\)
\(\begin{array}{l} + )\,\,\dfrac{5}{6} - x = \dfrac{{ - 1}}{{12}} + \dfrac{4}{3}\\\dfrac{5}{6} - x = \dfrac{5}{4}\\x = \dfrac{5}{6} - \dfrac{5}{4}\\x = \dfrac{{ - 5}}{{12}}.\end{array}\)
Nên \({x_2} = - \dfrac{5}{{12}}\)
Từ đó \({x_1} + {x_2} = \dfrac{9}{4} + \left( { - \dfrac{5}{{12}}} \right) = \dfrac{{11}}{6}\)
Rút gọn phân số \(A = \dfrac{{7.9 + 14.27 + 21.36}}{{21.27 + 42.81 + 63.108}}\) đến tối giản ta được kết quả là phân số có mẫu số là
Ta có
\(\begin{array}{l}A = \dfrac{{7.9 + 14.27 + 21.36}}{{21.27 + 42.81 + 63.108}}\\ = \dfrac{{7.9\left( {1 + 2.3 + 3.4} \right)}}{{21.27\left( {1 + 2.3 + 3.4} \right)}}\\ = \dfrac{{7.9}}{{3.7.9.3}}\\ = \dfrac{1}{9}\end{array}\)
Cho \(A = \dfrac{{\left( {3\dfrac{2}{{15}} + \dfrac{1}{5}} \right):2\dfrac{1}{2}}}{{\left( {5\dfrac{3}{7} - 2\dfrac{1}{4}} \right):4\dfrac{{43}}{{56}}}}\) và \(B = \dfrac{{1,2:\left( {1\dfrac{1}{5}.1\dfrac{1}{4}} \right)}}{{0,32 + \dfrac{2}{{25}}}}\) . Chọn đáp án đúng.
Ta có \(A = \dfrac{{\left( {3\dfrac{2}{{15}} + \dfrac{1}{5}} \right):2\dfrac{1}{2}}}{{\left( {5\dfrac{3}{7} - 2\dfrac{1}{4}} \right):4\dfrac{{43}}{{56}}}}\)\( = \dfrac{{\left( {\dfrac{{47}}{{15}} + \dfrac{3}{{15}}} \right):\dfrac{5}{2}}}{{\left( {\dfrac{{38}}{7} - \dfrac{9}{4}} \right):\dfrac{{267}}{{56}}}} = \dfrac{{\dfrac{{50}}{{15}}.\dfrac{2}{5}}}{{\left( {\dfrac{{152}}{{28}} - \dfrac{{63}}{{28}}} \right).\dfrac{{56}}{{267}}}}\)\( = \dfrac{{\dfrac{4}{3}}}{{\dfrac{{89}}{{28}}.\dfrac{{56}}{{267}}}} = \dfrac{{\dfrac{4}{3}}}{{\dfrac{2}{3}}} = 2\)
Và \(B = \dfrac{{1,2:\left( {1\dfrac{1}{5}.1\dfrac{1}{4}} \right)}}{{0,32 + \dfrac{2}{{25}}}}\)\( = \dfrac{{\dfrac{6}{5}:\left( {\dfrac{6}{5}.\dfrac{5}{4}} \right)}}{{\dfrac{8}{{25}} + \dfrac{2}{{25}}}} = \dfrac{{\dfrac{6}{5}:\dfrac{3}{2}}}{{\dfrac{{10}}{{25}}}} = \dfrac{{\dfrac{4}{5}}}{{\dfrac{2}{5}}} = 2\)
Vậy \(A = B.\)
Chọn câu đúng.
Ta có:
\(\dfrac{{2323}}{{9999}} = \dfrac{{2323:101}}{{9999:101}} = \dfrac{{23}}{{99}}\)
\(\dfrac{{232323}}{{999999}} = \dfrac{{232323:10101}}{{999999:10101}} = \dfrac{{23}}{{99}}\)
\(\dfrac{{23232323}}{{99999999}} = \dfrac{{23232323:1010101}}{{99999999:1010101}} = \dfrac{{23}}{{99}}\)
Vậy $\dfrac{{23}}{{99}} = \dfrac{{2323}}{{9999}} = \dfrac{{232323}}{{999999}} = \dfrac{{23232323}}{{99999999}}$
Không qui đồng, hãy so sánh hai phân số sau: \(\dfrac{{37}}{{67}}\) và \(\dfrac{{377}}{{677}}\).
Ta có:
\(1 - \dfrac{{37}}{{67}} = \dfrac{{30}}{{67}};\;\;\;\;1 - \dfrac{{377}}{{677}} = \dfrac{{300}}{{677}}.\)
Lại có: \(\dfrac{{30}}{{67}} = \dfrac{{300}}{{670}} > \dfrac{{300}}{{677}}\) nên \(\dfrac{{37}}{{67}} < \dfrac{{377}}{{677}}\) .