$M$ là trung điểm của đoạn thẳng $AB$ khi và chỉ khi:
\(M\) là trung điểm của đoạn thẳng \(AB\)$ \Leftrightarrow \left\{ \begin{array}{l}AM + MB = AB\\{\rm{MA = MB}}\end{array} \right.$
Nếu ta có \(P\) là trung điểm của \(MN\) thì
Ta có \(P\) là trung điểm của \(MN\) thì \(MP = NP = \dfrac{{MN}}{2}\)
Cho đoạn thẳng $AB$ dài $12cm$, $M$ là trung điểm của đoạn thẳng $AB.$ Khi đó, độ dài của đoạn thẳng $MA$ bằng
Vì \(M\) là trung điểm của đoạn thẳng \(AB\) $ \Leftrightarrow {\rm{AM = }}\dfrac{1}{2}AB = \dfrac{1}{2}.12 = 6cm$
Vậy $AM = 6cm$.
Cho $I$ là trung điểm của đoạn thẳng $MN.$ Biết $NI = 8cm$. Khi đó, độ dài của đoạn thẳng $MN$ bằng
Vì $I$ là trung điểm của đoạn thẳng $MN$ nên $IM = IN = \dfrac{1}{2}MN$ hay $MN = 2.IN = 2.8 = 16cm$.
Trên tia $Ox$ lấy hai điểm $A$ và $B$ sao cho $OA = 3cm,OB = 6cm$. Chọn câu sai.
Vì hai điểm $A,B$ cùng thuộc tia $Ox$ mà $OA < OB\,\left( {3cm < 6cm} \right)$ nên điểm $A$ nằm giữa hai điểm $O$ và $B$. (1)
Do đó $OA + AB = OB$$ \Rightarrow AB = OB - OA = 6 - 3 = 3cm$. Suy ra $OA = AB = 3cm$(2)
Từ (1) và (2) suy ra $A$ là trung điểm của đoạn $OB$.
Vậy các đáp án $A;B;D$ đều đúng, $C$ sai.
Cho đoạn thẳng $AB.$Gọi $M$ và $N$ lần lượt là trung điểm của các đoạn thẳng $AB$ và $AM.$ Giả sử $AN = 1,5cm$. Đoạn thẳng $AB$ có độ dài là?
Vì $N$ là trung điểm đoạn $AM$ nên $AN = \dfrac{1}{2}AM$ hay $AM = 2AN = 2.1,5 = 3cm$
Lại có điểm $M$ là trung điểm đoạn thẳng $AB$ nên ta có $AM = \dfrac{1}{2}AB$ hay $AB = 2AM = 2.3 = 6cm$
Vậy $AB = 6cm$.
Cho đoạn thẳng $AB = 8cm$. Gọi $I$ và $K$ lần lượt là trung điểm của các đoạn thẳng $AB$ và $AI.$ Đoạn thẳng $IK$ có độ dài là?
Vì điểm $I$ là trung điểm đoạn thẳng $AB$ nên $AI = \dfrac{1}{2}AB = \dfrac{1}{2}.8 = 4cm$
Vì điểm $K$ là trung điểm đoạn thẳng $AI$ nên $AK = \dfrac{1}{2}AI = \dfrac{1}{2}.4 = 2cm$
Vậy $AI = 2cm$.
Cho đoạn thẳng $AB$ dài $14cm.$ Trên tia $AB$ lấy điểm $M$ sao cho $AM = 7cm.$ Chọn câu sai.
Vì điểm $M$ thuộc tia $AB$ mà $AM < AB\left( {7cm < 14cm} \right)$ nên điểm $M$ nằm giữa hai điểm $A$ và $B$. (1)
Do đó $AM + MB = AB$ $ \Rightarrow MB = AB - AM = 14 - 7 = 7cm$. Suy ra $AM = MB = 7cm$ (2)
Từ (1) và (2) suy ra $M$ là trung điểm của đoạn $AB$.
Vậy các đáp án A, B, D đúng và C sai vì $BM = 7cm < 14cm = AB$.
Trên tia $Ox$ có các điểm $A,{\rm{ }}B$ sao cho $OA = 2cm;OB = 5cm.$ Gọi $M$ là trung điểm của đoạn thẳng $OB.$ Tính độ dài đoạn thẳng $AM.$
Vì $M$ là trung điểm của đoạn thẳng $OB$ nên ta có $OM = \dfrac{1}{2}OB = \dfrac{1}{2}.5 = 2,5cm$
Vì $A$ và $M$ cùng thuộc tia $Ox$ mà $OA < OM\,\left( {2cm < 2,5cm} \right)$ nên điểm $A$ nằm giữa hai điểm $O$ và $M$.
Do đó $OA + AM = OM$ $ \Rightarrow AM = OM - OA = 2,5 - 2 = 0,5cm$
Vậy $AM = 0,5cm.$
Trên tia $Ox$ lấy các điểm $M,{\rm{ }}N$ sao cho $OM = 2cm;ON = 3cm.$Trên tia đối của tia $NO$ lấy điểm $P$ sao cho $NP = 1cm.$
Tính độ dài các đoạn thẳng $MN$ và $MP.$
Vì hai điểm $M;N$ cùng thuộc tia $Ox$ mà $OM < ON\left( {2cm < 3cm} \right)$ nên điểm $M$ nằm giữa hai điểm $O$ và $N$.
Do đó $OM + MN = ON \Rightarrow MN = ON - OM$ $ = 3 - 2 = 1cm$
Vì hai tia $NP$ và $NO$ đối nhau mà $M$ nằm giữa hai điểm $O$ và $N$ nên $N$ là điểm nằm giữa $M$ và $P$
Do đó $MN + NP = MP$ hay $MP = 1 + 1 = 2cm$.
Vậy $MN = 1cm;\,MP = 2cm$.
Trên tia $Ox$ lấy các điểm $M,{\rm{ }}N$ sao cho $OM = 2cm;ON = 3cm.$Trên tia đối của tia $NO$ lấy điểm $P$ sao cho $NP = 1cm.$
Hãy chọn câu đúng nhất
Từ câu trước và đề bài ta có $MN = 1cm;\,MP = 2cm;\,OM = 2cm;NP = 1cm$
Suy ra $MN = NP\left( { = 1cm} \right)\,\,\,\left( 1 \right);\,MP = OM\left( { = 2cm} \right)\,\left( 2 \right)$
Lại có $M$ nằm giữa hai điểm $O$ và $N$ mà $N$ nằm giữa hai điểm $M$ và $P$ nên điểm $M$ nằm giữa hai điểm $O$ và $P$ (3)
Từ (2) và (3) ta có $M$ là trung điểm đoạn $OP.$
Theo câu trước ta có $N$ là điểm nằm giữa $M$ và $P$ nên kết hợp với $\left( 1 \right)$ suy ra $N$ là trung điểm đoạn $MP$.
Nên cả A, B đều đúng.