Tìm tập hợp các bội của $6$ trong các số: $6;15;24;30;40$.
Trong các số trên thì $B\left( 6 \right) = \left\{ {6;24;30} \right\}$
Tìm các số tự nhiên $x$ sao cho \(x \in \) Ư$\left( {32} \right)$ và $x > 5$.
$\,\left\{ \begin{array}{l}x \in Ư\left( {32} \right)\\x > 5\end{array} \right. \Rightarrow \,\left\{ \begin{array}{l}x \in {\rm{\{ 1; 2; 4; 8; 16; 32\} }}\\x > 5\end{array} \right.$
$ \Rightarrow x \in \left\{ {8;16;32} \right\}$
Có bao nhiêu số tự nhiên $x\; \in B\left( {8} \right)$ và $8 <x \le 88$
$\,\,\left\{ \begin{array}{l}x \in B\left( 8 \right)\\8 < x \le 88\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x \in {\rm{\{ 0;8;16;24; 32;}}...{\rm{\} }}\\8 < x \le 88\end{array} \right.$$ \Rightarrow x \in \left\{ {16;24;32;40;48;56;64;72;80;88} \right\}$
Vậy có \(10\) số thỏa mãn yêu cầu bài toán.
Có bao nhiêu số có hai chữ số là bội của \(9\)?
Số có hai chữ số là số lớn hơn hoặc bằng $10$ và nhỏ hơn hoặc bằng $99$.
Gọi $A = \left\{ {x \in B\left( 9 \right)|10 \le x \le 99} \right\}$
Suy ra \(A = \left\{ {18;27;36;...;\,99} \right\}\)
Số phần tử của A là \(\left( {99 - 18} \right):9 + 1 = 10\) (phần tử)
Vậy có $10$ bội của $9$ là số có hai chữ số.
Có bao nhiêu số vừa là bội của $5$ vừa là ước của $50$?
Gọi $x$ là số vừa là bội của $5$ vừa là ước của $50$.
\(\left\{ \begin{array}{l}x \in B\left( 5 \right)\\x \in Ư\left( {50} \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x \in {\rm{\{ 0;}}\,{\rm{5;10;15;20;25;}}...{\rm{\} }}\\x \in {\rm{\{ 1;2;5;10;25;50\} }}\end{array} \right.\)
\( \Rightarrow \,x\, \in \,{\rm{\{ 5;10;25;50\} }}\)
Tìm các số tự nhiên $x$ sao cho $8\; \vdots \left( {x-1} \right)?$
$8 \vdots \left( {x - 1} \right) \Rightarrow \left( {x - 1} \right) \in $Ư\(\left( 8 \right)\)
$ \Rightarrow \left( {x - 1} \right) \in \left\{ {1;2;4;8} \right\}$
+ Với \(x - 1 = 1\) thì \(x = 1 + 1\) hay \(x = 2\)
+ Với \(x - 1 = 2\) thì \(x = 1 + 2\) hay \(x = 3\)
+ Với \(x - 1 = 4\) thì \(x = 1 + 4\) hay \(x = 5\)
+ Với \(x - 1 = 8\) thì \(x = 1 + 8\) hay \(x = 9\)
$ \Rightarrow x \in \left\{ {2;3;5;9} \right\}$
Tìm \(\overline {abcd} \), trong đó \(a,b,c,d\) là $4$ số tự nhiên liên tiếp tăng dần và \(\overline {abcd} \in B\left( 5 \right)\)
$\overline {abcd} \in B\left( 5 \right)$
Ta có:
$\overline {abcd} \in B\left( 5 \right) \Rightarrow \overline {abcd} \vdots 5 \Rightarrow d \in \left\{ {0;5} \right\}$
$d = 5 \Rightarrow \overline {abcd} = 2345$
\({\rm{d}} = 0 \Rightarrow \) Loại, vì $a,b,c,d$ là $4$ số tự nhiên liên tiếp tăng dần.
Vậy $\overline {abcd} = 2345.$
Khẳng định nào sau đây đúng?
Ta có: 16:1=16; 16:2=8; 16:4=4; 16:8=2; 16:16=1
Các ước của 16 là 1;2;4;8;16.
=> Ư\(\left( {16} \right) = \left\{ {1;2;4;8;16} \right\}\)
Đội Sao đỏ của trường có 24 bạn. Cô phụ trách muốn chia đội thành các nhóm đều nhau để kiểm tra vệ sinh lớp học, mỗi nhóm có ít nhất 2 bạn và có ít nhất 2 nhóm. Có bao nhiêu cách chia thành các nhóm như thế?
Để chia đều 24 bạn thành các nhóm bằng nhau thì số học sinh trong nhóm phải là ước của 24. Các ước của 24 là: 1; 2; 3; 4; 6; 8; 12; 24.
Vì mỗi nhóm có ít nhất 2 bạn đồng thời số nhóm không thể là 1 nên số học sinh trong một nhóm cũng không thể là 24 bạn.
Vậy số học sinh trong một nhóm chỉ có thể là: 2;3;4;6;8;12.
Vậy cô có thể chia đội thành:
+ 12 nhóm, mỗi nhóm có 2 bạn;
+ 8 nhóm, mỗi nhóm có 3 bạn;
+ 6 nhóm, mỗi nhóm có 4 bạn;
+ 4 nhóm, mỗi nhóm có 6 bạn;
+ 3 nhóm, mỗi nhóm có 8 bạn.
+ 2 nhóm, mỗi nhóm có 12 bạn.
Khẳng định nào sau đây đúng?
Ta lấy 2 nhân với từng số 0 thì được 0 nên 0 là bội của 2, lấy 2.1=2 nên 2 là bội của 2, 2.2=4 nên 4 là bội của 2,...
Vậy B\(\left( 2 \right) = \left\{ {0;2;4;6;8;...} \right\}\)