Bài tập ôn tập chương 5: Phân số

Sách chân trời sáng tạo

Đổi lựa chọn

Câu 21 Trắc nghiệm

Cho phân số \(A = \dfrac{{n - 5}}{{n + 1}}\,\,\left( {n \in Z;n \ne  - 1} \right)\)

Có bao nhiêu giá trị nguyên của \(n\) để A có giá trị nguyên.

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Ta có \(A = \dfrac{{n - 5}}{{n + 1}} = \dfrac{{n + 1 - 6}}{{n + 1}} = \dfrac{{n + 1}}{{n + 1}} - \dfrac{6}{{n + 1}} = 1 - \dfrac{6}{{n + 1}}\)

Để A có giá trị nguyên thì \(6\, \vdots \,\left( {n + 1} \right) \Rightarrow \left( {n + 1} \right) \in Ư\left( 6 \right) = \left\{ { \pm 1; \pm 2; \pm 3; \pm 6} \right\}\)

Ta có bảng sau

Vậy có 8 giá trị của n thỏa mãn là \(0; - 2;1; - 3;2; - 4;5; - 7.\)

Câu 22 Trắc nghiệm

Cho phân số \(A = \dfrac{{n - 5}}{{n + 1}}\,\,\left( {n \in Z;n \ne  - 1} \right)\)

Tìm điều kiện của n để A là phân số tối giản.

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Để A tối giản thì (n-5) và (n+1) là hai số nguyên tố cùng nhau \( \Rightarrow \left( {n - 5;n + 1} \right) = 1\)

\( \Leftrightarrow \left( {n + 1 - n + 5;n + 1} \right) = 1 \Leftrightarrow \left( {n + 1;6} \right) = 1\)

Từ đó (n+1) không chia hết cho 2 và (n+1) không chia hết cho 3 

Hay \(n \ne 2k - 1\)  và \(n \ne 3k - 1\,\,\left( {k \in Z} \right)\)

Câu 23 Trắc nghiệm

Tính nhanh: \(A = \dfrac{5}{{1.3}} + \dfrac{5}{{3.5}} + \dfrac{5}{{5.7}} + ... + \dfrac{5}{{99.101}}\)

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

$\begin{array}{l}A = \dfrac{5}{{1.3}} + \dfrac{5}{{3.5}} + \dfrac{5}{{5.7}} + ... + \dfrac{5}{{99.101}}\\ = 5.\left( {\dfrac{1}{{1.3}} + \dfrac{1}{{3.5}} + \dfrac{1}{{5.7}} + ... + \dfrac{1}{{99.101}}} \right)\end{array}$

$= \dfrac{5}{2}.\left( {\dfrac{2}{{1.3}} + \dfrac{2}{{3.5}} + \dfrac{2}{{5.7}} + ... + \dfrac{2}{{99.101}}} \right)$

$ = \dfrac{5}{2}.\left( {1 - \dfrac{1}{3} + \dfrac{1}{3} - \dfrac{1}{5} + \dfrac{1}{5} - \dfrac{1}{7} + ... + \dfrac{1}{{99}} - \dfrac{1}{{101}}} \right)$

$\begin{array}{l} = \dfrac{5}{2}.\left( {1 - \dfrac{1}{{101}}} \right)\\ = \dfrac{5}{2}.\dfrac{{100}}{{101}} = \dfrac{{250}}{{101}}.\end{array}$

Câu 24 Trắc nghiệm

Tính nhanh: \(A = \dfrac{5}{{1.3}} + \dfrac{5}{{3.5}} + \dfrac{5}{{5.7}} + ... + \dfrac{5}{{99.101}}\)

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

$\begin{array}{l}A = \dfrac{5}{{1.3}} + \dfrac{5}{{3.5}} + \dfrac{5}{{5.7}} + ... + \dfrac{5}{{99.101}}\\ = 5.\left( {\dfrac{1}{{1.3}} + \dfrac{1}{{3.5}} + \dfrac{1}{{5.7}} + ... + \dfrac{1}{{99.101}}} \right)\end{array}$

$ = \dfrac{5}{2}.\left( {1 - \dfrac{1}{3} + \dfrac{1}{3} - \dfrac{1}{5} + \dfrac{1}{5} - \dfrac{1}{7} + ... + \dfrac{1}{{99}} - \dfrac{1}{{101}}} \right)$

$\begin{array}{l} = \dfrac{5}{2}.\left( {1 - \dfrac{1}{{101}}} \right)\\ = \dfrac{5}{2}.\dfrac{{100}}{{101}} = \dfrac{{250}}{{101}}.\end{array}$

Câu 25 Trắc nghiệm

Chọn câu đúng.

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Ta có \(\dfrac{{31}}{2}.\dfrac{{32}}{2}.\dfrac{{33}}{2}....\dfrac{{60}}{2} = \dfrac{{31.32.33...60}}{{2.2.2....2}} = \dfrac{{\left( {31.32.33...60} \right)\left( {1.2.3...30} \right)}}{{{2^{30}}\left( {1.2.3...30} \right)}}\)

\( = \dfrac{{1.2.3.4.5...60}}{{\left( {1.2} \right).\left( {2.2} \right).\left( {3.2} \right).\left( {4.2} \right)...\left( {30.2} \right)}}\)\( = \dfrac{{\left( {2.4.6...60} \right)\left( {1.3.5.7...59} \right)}}{{2.4.6...60}} = 1.3.5...59\)