Thể tích khối hộp

Kỳ thi ĐGNL ĐHQG Hồ Chí Minh

Đổi lựa chọn

Câu 21 Trắc nghiệm

Lăng trụ đứng tứ giác có đáy là hình thoi mà các đường chéo là \(6cm\) và \(8cm\), biết rằng chu vi đáy bằng 2 lần chiều cao lăng trụ. Tính thể tích khối lăng trụ

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Gọi \(O = AC \cap BD\) ta có: \(OA = 3cm\,;\,OB = 4cm\)

Xét tam giác vuông $OAB$ có: \(AB = \sqrt {O{A^2} + O{B^2}}  = \sqrt {{3^2} + {4^2}}  = 5cm\).

Khi đó chu vi đáy bằng \(P = 4.5 = 20 = 2AA' \Rightarrow AA' = 10\left( {cm} \right)\)

\({S_{ABCD}} = \dfrac{1}{2}AC.BD = \dfrac{1}{2}.6.8 = 24\left( {c{m^2}} \right)\)

Vậy \({V_{ABCD.A'B'C'D'}} = AA'.{S_{ABCD}} = 10.24 = 240\left( {c{m^3}} \right)\)

Câu 22 Trắc nghiệm

Cho lăng trụ đứng \(ABC.A'B'C'\) với $ABC$ là tam giác vuông cân tại $C$ có \(AB = a\) , mặt bên \(ABB'A'\) là hình vuông. Mặt phẳng qua trung điểm $I$ của $AB$ và vuông góc với \(AB'\) chia khối lăng trụ thành 2 phần. Tính thể tích mỗi phần?

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Gọi $D$ là trung điểm của $AA'$  ta có $ID$ là đường trung bình của tam giác \(AA'B \Rightarrow ID//A'B\)

Mà \(A'B \bot AB'\) (do \(ABB'A'\) là hình vuông)

\( \Rightarrow ID \bot AB'\)

Tam giác $ABC$ vuông cân tại $C$ nên \(IC \bot AB\). Mà \(AA' \bot \left( {ABC} \right) \Rightarrow AA' \bot IC\)

\( \Rightarrow IC \bot \left( {ABB'A'} \right) \Rightarrow IC \bot AB'\)

\( \Rightarrow AB' \bot \left( {ICD} \right)\)

\( \Rightarrow \) Mặt phẳng qua $I$ và vuông  góc với $AB'$  là \(\left( {ICD} \right)\)

Tam giác $ABC$ vuông cân tại $C$ nên \(AC = BC = \dfrac{{AB}}{{\sqrt 2 }} = \dfrac{a}{{\sqrt 2 }} \Rightarrow {S_{ABC}} = \dfrac{1}{2}AC.BC = \dfrac{1}{2}\dfrac{a}{{\sqrt 2 }}\dfrac{a}{{\sqrt 2 }} = \dfrac{{{a^2}}}{4}\)

\(ABB'A'\) là hình vuông \( \Rightarrow AA' = AB = a\)

\( \Rightarrow {V_{ABC.A'B'C'}} = AA'.{S_{ABC}} = a.\dfrac{{{a^2}}}{4} = \dfrac{{{a^3}}}{4} = V\)

Ta có: \({V_{D.ACI}} = \dfrac{1}{3}AD.{S_{ACI}} = \dfrac{1}{3}.\dfrac{1}{2}AA'.\dfrac{1}{2}{S_{ABC}} = \dfrac{1}{{12}}{V_{ABC.A'B'C'}} = \dfrac{1}{{12}}.\dfrac{{{a^3}}}{4} = \dfrac{{{a^3}}}{{48}} = {V_1}\)

\( \Rightarrow {V_2} = V - {V_1} = \dfrac{{{a^3}}}{4} - \dfrac{{{a^3}}}{{48}} = \dfrac{{11{a^3}}}{{48}}\)

Câu 23 Trắc nghiệm

Cho đa diện \(ABCDEF\) có \(AD,BE,CF\) đôi một song song. \(AD \bot \left( {ABC} \right)\), \(AD + BE + CF = 5\), diện tích tam giác \(ABC\) bằng \(10\). Thể tích đa diện \(ABCDEF\) bằng

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Chọn \(AD = BE = CF = \dfrac{5}{3}\) thì đa diện là hình lăng trụ đứng \(ABC.DEF\) có diện tích đáy \({S_{ABC}} = 10\) và chiều cao \(AD = \dfrac{5}{3}\).

Thể tích \(V = {S_{ABC}}.AD = 10.\dfrac{5}{3} = \dfrac{{50}}{3}\).

Câu 24 Trắc nghiệm

Cho hình hộp \(ABCD.A'B'C'D'\) có thể tích bằng \(V\). Gọi \(M,\,\,N,\,\,P,\,\,Q,\,\,E,\,\,F\) lần lượt là tâm các hình bình hành \(ABCD,\,\,A'B'C'D',\,\,ABB'A',\,\,BCC'B',\,\,CDD'C',\,\,DAA'D'\). Thể tích khối đa diện có các đỉnh \(M,\,\,P,\,\,Q,\,\,E,\,\,F,\,\,N\) bằng:

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Đặc biệt hóa, coi \(ABCD.A'B'C'D'\) là khối lập phương cạnh bằng 1 \( \Rightarrow {V_{ABCD.A'B'C'D'}} = 1 = V\).

Dễ thấy \(MNPQEF\) là khối bát diện đều cạnh cạnh \(QE = \dfrac{1}{2}BD = \dfrac{{\sqrt 2 }}{2}\).

Vậy \({V_{MNPQEF}} = \dfrac{{{{\left( {\dfrac{{\sqrt 2 }}{2}} \right)}^3}\sqrt 2 }}{3} = \dfrac{1}{6} = \dfrac{V}{6}\).

Câu 25 Trắc nghiệm

Cho hình lập phương ABCD.A' B 'C ' D ' có diện tích mặt chéo ACC’A’ bằng \(2\sqrt 2 {a^2}\). Thể tích của khối lập phươg ABCD.A’B’C’D’ bằng

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Gọi độ dài cạnh hình lập phương là x.

Khi đó \(AC = x\sqrt 2 ;AA' = x\)

Mà diện tích mặt chéo ACC’A’ bằng \(2\sqrt 2 {a^2}\) nên

\(AC.AA' = 2\sqrt 2 {a^2} \Rightarrow x\sqrt 2 .x = 2\sqrt 2 {a^2} \Rightarrow x = a\sqrt 2 \)

Khi đó thể tích hình lập phương là \(V = {x^3} = 2{a^3}\sqrt 2 \)

Câu 26 Trắc nghiệm

Cho hình lăng trụ \(ABC.A'B'C'\) có đáy \(ABC\) là tam giác vuông tại \(A.\) Cạnh \(BC = 2a\) và \(\angle ABC = {60^0}.\) Biết tứ giác \(BCC'B'\) là hình thoi có \(\angle B'BC\) nhọn. Mặt phẳng \(\left( {BCC'B'} \right)\) vuông góc với \(\left( {ABC} \right)\) và mặt phẳng \(\left( {ABB'A'} \right)\) tạo với \(\left( {ABC} \right)\) góc \({45^0}.\) Thể tích khối lăng trụ \(ABC.A'B'C'\) bằng:

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Trong \(\left( {BCC'B'} \right)\) kẻ \(B'H \bot BC\,\,\left( {H \in BC} \right)\) (do \(\angle B'BC\) nhọn).

Trong \(\left( {ABC} \right)\) kẻ \(HK\parallel AC \Rightarrow HK \bot AB\) ta có: \(\left\{ \begin{array}{l}AB \bot HK\\AB \bot B'H\end{array} \right. \Rightarrow AB \bot \left( {B'HK} \right) \Rightarrow AB \bot B'K\).

Ta có: \(\left\{ \begin{array}{l}\left( {ABB'A'} \right) \cap \left( {ABC} \right) = AB\\B'K \subset \left( {ABB'A'} \right),\,\,B'K \bot AB\\HK \subset \left( {ABC} \right),\,\,HK \bot AB\end{array} \right.\) \( \Rightarrow \angle \left( {\left( {ABB'A'} \right);\left( {ABC} \right)} \right) = \angle \left( {B'K;HK} \right) = \angle B'HK = {45^0}\).

\( \Rightarrow \Delta B'HK\) vuông cân tại \(H \Rightarrow B'H = HK = x\).

Xét tam giác vuông \(BB'H\) có: \(BH = \sqrt {BB{'^2} - BH{'^2}}  = \sqrt {4{a^2} - {x^2}} \).

Xét tam giác vuông \(ABC\) có: \(AC = BC.\sin {60^0} = a\sqrt 3 \), \(AB = BC.\cos {60^0} = a\).

Áp dụng định lí Ta-lét ta có: \(\dfrac{{BH}}{{BC}} = \dfrac{{HK}}{{AC}} \Rightarrow \dfrac{{\sqrt {4{a^2} - {x^2}} }}{{2a}} = \dfrac{x}{{a\sqrt 3 }}\)

\(\begin{array}{l} \Leftrightarrow 3\left( {4{a^2} - {x^2}} \right) = 4{x^2}\\ \Leftrightarrow 12{a^2} - 3{x^2} = 4{x^2}\\ \Leftrightarrow {x^2} = \dfrac{{12{a^2}}}{7}\\ \Leftrightarrow x = \dfrac{{2a\sqrt {21} }}{7} = B'H\end{array}\)

\({S_{\Delta ABC}} = \dfrac{1}{2}AB.AC = \dfrac{1}{2}.a.a\sqrt 3  = \dfrac{{{a^2}\sqrt 3 }}{2}\).

Vậy \({V_{ABC.A'B'C'}} = B'H.{S_{\Delta ABC}} = \dfrac{{2a\sqrt {21} }}{7}.\dfrac{{{a^2}\sqrt 3 }}{2} = \dfrac{{3{a^3}\sqrt 7 }}{7}\).

Câu 27 Trắc nghiệm

Cho khối lập phương có thể tích bằng 27, diện tích toàn phần của khối lập phương đã cho bằng:

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Cạnh của khối lập phương đã cho là:\(a = \sqrt[3]{{27}} = 3.\)

\( \Rightarrow \) Diện tích toàn phần của khối lập phương đã cho là: \({6.3^2} = 54.\)

Câu 28 Trắc nghiệm

Cho hình lăng trụ tam giác đều \(ABC.A'B'C'\)có \(AB = a,\) đường thẳng \(A'B\) tạo với mặt phẳng \(\left( {BCC'B'} \right)\) một góc \({30^0}.\) Tính thể tích khối lăng trụ \(ABC.A'B'C'.\)

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Gọi \(M\) là trung điểm của \(B'C'\). Vì \(\Delta A'B'C'\) đều nên \(A'M \bot B'C'\).

Ta có: \(\left\{ \begin{array}{l}A'M \bot B'C'\\A'M \bot BB'\,\,\left( {BB' \bot \left( {A'B'C'} \right)} \right)\end{array} \right.\) \( \Rightarrow A'M \bot \left( {BCC'B'} \right)\).

\( \Rightarrow BM\) là hình chiếu của \(A'M\) lên \(\left( {BCC'B'} \right)\) \( \Rightarrow \angle \left( {A'B;\left( {BCC'B'} \right)} \right) = \angle \left( {A'B;MB} \right) = \angle A'BM = {30^0}\).

Theo bài ra ta có \(\Delta A'B'C'\) đều cạnh \(a\) nên \(A'M = \dfrac{{a\sqrt 3 }}{2}\) và \({S_{\Delta A'B'C'}} = \dfrac{{{a^2}\sqrt 3 }}{4}\).

Ta có: \(A'M \bot \left( {BCC'B'} \right) \Rightarrow A'M \bot BM\) \( \Rightarrow \Delta A'BM\) vuông tại \(M\) \( \Rightarrow BM = A'M.\cot {30^0} = \dfrac{{3a}}{2}\).

Áp dụng định lí Pytago trong tam giác vuông \(BB'M\) ta có: \(BB' = \sqrt {B{M^2} - BB{'^2}}  = \sqrt {{{\left( {\dfrac{{3a}}{2}} \right)}^2} - {{\left( {\dfrac{a}{2}} \right)}^2}}  = a\sqrt 2 \).

Vậy \({V_{ABC.A'B'C'}} = BB'.{S_{A'B'C'}} = a\sqrt 2 .\dfrac{{{a^2}\sqrt 3 }}{4} = \dfrac{{{a^3}\sqrt 6 }}{4}\).

Câu 29 Trắc nghiệm

Cho hình lập phương \(ABCD.A'B'C'D'\) có thể tích \(V\). Gọi \(M\) là điểm thuộc cạnh \(BB'\) sao cho \(MB = 2MB'\). Mặt phẳng \(\left( \alpha  \right)\) đi qua \(M\) và vuông góc với \(AC'\) cắt các cạnh \(DD'\), \(DC\), \(BC\) lần lượt tại \(N\), \(P\), \(Q\). Gọi \({V_1}\) là thể tích của khối đa diện \(CPQMNC'\).Tính tỉ số \(\dfrac{{{V_1}}}{V}\).

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Gọi cạnh của hình lập phương là \(a\).

Ta có:

 \(\left( \alpha  \right) \bot AC'\)\( \Rightarrow \left( \alpha  \right)\parallel BD\). Trong \(\left( {BDD'B'} \right)\) kẻ \(MN\parallel BD\,\,\left( {N \in DD'} \right)\).

 \(\left( \alpha  \right) \bot AC' \Rightarrow \alpha \parallel B'C\). Trong \(\left( {BCC'B'} \right)\) kẻ \(MQ\parallel B'C\,\,\left( {Q \in BC} \right)\).

\(\left( \alpha  \right) \bot AC'\)\( \Rightarrow \left( \alpha  \right)\parallel BD\). Trong \(\left( {BDD'B'} \right)\) kẻ \(MN\parallel BD\,\,\left( {N \in DD'} \right)\).

 \(\left( \alpha  \right) \bot AC' \Rightarrow \alpha \parallel B'C\). Trong \(\left( {ABCD} \right)\) kẻ \(PQ\parallel BD\,\,\left( {P \in DC} \right)\).

Khi đó \(\left( \alpha  \right) \equiv \left( {MNPQ} \right)\).

Theo cách dựng ta có \(BQ = 2QC,\,\,DP = 2PC,\,\,DN = 2ND'\).

Gọi \(H\) là điểm thuộc \(CC'\) sao cho \(CH = 2HC'\).

Khi đó ta có: \({V_{CPQMNC'}} = {V_{C.MHN}} + {V_{CQP.MHN}}\).

Xét hình chóp \(C'.MHN\) có \(C'H = \dfrac{a}{3}\), \({S_{\Delta MHN}} = \dfrac{1}{2}{a^2}\).

\( \Rightarrow {V_{C'.MHN}} = \dfrac{1}{3}C'H.{S_{\Delta MHN}} = \dfrac{1}{3}.\dfrac{a}{3}.\dfrac{{{a^2}}}{2} = \dfrac{{{a^3}}}{{18}} = \dfrac{V}{{18}}\).

Xét hình chóp cụt \(CQP.MHN\) có

\(\begin{array}{l}{V_{CQP.MHN}} = {V_{I.MHN}} - {V_{I.CQP}} = \dfrac{1}{3}\left( {IH.{S_{\Delta MHN}} - IC.{S_{\Delta CQP}}} \right)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{1}{3}\left( {a.\dfrac{1}{2}{a^2} - \dfrac{a}{3}.\dfrac{1}{2}.\dfrac{a}{3}.\dfrac{a}{3}} \right) = \dfrac{{13{a^3}}}{8} = \dfrac{{13V}}{{81}}\end{array}\)

\( \Rightarrow {V_1} = {V_{CPQMNC'}} = {V_{C.MHN}} + {V_{CQP.MHN}} = \dfrac{V}{{18}} + \dfrac{{13V}}{{81}} = \dfrac{{35V}}{{162}}\).

Vậy \(\dfrac{{{V_1}}}{V} = \dfrac{{35}}{{162}}\)

Câu 30 Trắc nghiệm

Cho lăng trụ đều \(ABC.A'B'C'\), cạnh đáy bằng a, góc giữa hai mặt phẳng \(\left( {A'BC} \right)\) và \(\left( {ABC} \right)\) bằng \(60^\circ \). Tính thể tích khối lăng trụ đó.

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Gọi \(M\) là trung điểm của \(BC\). Ta có:

\(AM \bot BC\) (do \(\Delta ABC\) đều)

\(BC \bot AA'\,\,\left( {gt} \right)\)

\( \Rightarrow BC \bot \left( {AA'M} \right) \Rightarrow BC \bot A'M\).

Ta có: \(\left\{ \begin{array}{l}\left( {A'BC} \right) \cap \left( {ABC} \right) = BC\\AM \subset \left( {ABC} \right),\,\,AM \bot BC\\A'M \subset \left( {A'BC} \right),\,\,A'M \bot BC\end{array} \right.\) \( \Rightarrow \angle \left( {\left( {A'BC} \right);\left( {ABC} \right)} \right) = \angle \left( {A'M;AM} \right) = \angle A'MA = {60^0}\).

Vì \(\Delta ABC\) đều cạnh \(a\) nên \(AM = \dfrac{{a\sqrt 3 }}{2}\) và \({S_{\Delta ABC}} = \dfrac{{{a^2}\sqrt 3 }}{4}\).

Xét tam giác vuông \(A'AM\) có: \(AA' = AM.\tan {60^0} = \dfrac{{a\sqrt 3 }}{2}.\sqrt 3  = \dfrac{{3a}}{2}\).

Vậy thể tích khối lăng trụ là \({V_{ABC.A'B'C'}} = AA'.{S_{\Delta ABC}} = \dfrac{{3a}}{2}.\dfrac{{{a^2}\sqrt 3 }}{4} = \dfrac{{3{a^2}\sqrt 3 }}{8}\).

Câu 31 Trắc nghiệm

Đề thi THPT QG - 2021 - mã 101

Cho khối hộp chữ nhật \(ABCD.A'B'C'D'\) có đáy là hình vuông, \(BD = 2a,\) góc giữa hai mặt phẳng \(\left( {A'B{\rm{D}}} \right)\) và \(\left( {ABCD} \right)\) bằng \({30^0}\). Thể tích của khối hộp chữ nhật đã cho bằng

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

* Xác định \(\angle \left( {\left( {A'BD} \right);\left( {ABCD} \right)} \right)\).

+ \(\left( {A'BC} \right) \cap \left( {ABCD} \right) = BD\).

+ \(\left\{ \begin{array}{l}AA' \bot BD\\AO \bot BD\end{array} \right. \Rightarrow \left( {A'AO} \right) \bot BD\).

+ \(\left\{ \begin{array}{l}\left( {A'AO} \right) \cap \left( {A'BD} \right) = A'O\\\left( {A'AO} \right) \cap \left( {ABCD} \right) = AO\end{array} \right.\)

\( \Rightarrow \angle \left( {\left( {A'BD} \right);\left( {ABCD} \right)} \right) = \angle \left( {A'O;AO} \right) = \angle A'OA\).

\( \Rightarrow \angle A'OA = {30^0}\).

* Xét tam giác \(A'OA\) vuông tại \(A\)\(AO = \dfrac{1}{2}AC = \dfrac{1}{2}BD = a\).

\( \Rightarrow AA' = \tan {30^0}.AO = \dfrac{{a\sqrt 3 }}{3}\).

 

\( \Rightarrow {V_{ABCD.A'B'C'D'}} = {S_{ABCD}}.AA' = \dfrac{1}{2}AC.BD.AA'\) \( = \dfrac{1}{2}.{\left( {2a} \right)^2}.\dfrac{{a\sqrt 3 }}{3} = \dfrac{{2\sqrt 3 {a^3}}}{3}\).

Câu 32 Trắc nghiệm

Cho khối lăng trụ \(ABC.A'B'C'\). Gọi \(E\) là trọng tâm tam giác \(A'B'C'\) và \(F\) là trung điểm \(BC\). Gọi \({V_1}\) là thể tích khối chóp \(B'.EAF\) và \({V_2}\) là thể tích khối lăng trụ \(ABC.A'B'C'\). Khi đó \(\dfrac{{{V_1}}}{{{V_2}}}\) có giá trị bằng

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Gọi thể tích $ABC.A'B'C'$ là $V$.

Gọi \(M\) là trung điểm của \(B'C'\) ta có: \({S_{\Delta AEF}} = \dfrac{1}{2}{S_{AA'MF}}\) \( \Rightarrow {V_{B'.AEF}} = \dfrac{1}{2}{V_{B'.AA'MF}}\).

Mà \({V_{B'.AA'MF}} = \dfrac{2}{3}{V_{ABF.A'B'M}} = \dfrac{2}{3}.\dfrac{1}{2}V = \dfrac{1}{3}V\).

\( \Rightarrow {V_{B'.AEF}} = \dfrac{1}{2}{V_{B'.AA'MF}} = \dfrac{1}{2}.\dfrac{1}{3}V = \dfrac{1}{6}V\).

Vậy \(\dfrac{{{V_1}}}{V} = \dfrac{1}{6}\).

Câu 33 Trắc nghiệm

Cho hình lăng trụ tam giác \(ABC.A'B'C'\) có diện tích đáy bằng \(12\) và chiều cao bằng \(6\). Gọi \(M,\,\,N\) lần lượt là trung điểm của \(CB,\,\,CA\) và \(P,\,\,Q,\,\,R\) lần lượt là tâm các hình bình hành \(ABB'A'\), \(BCC'B'\), \(CAA'C'\). Thể tích của khối đa diện \(PQRABMN\) bằng:

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Gọi \(P',\,\,Q',\,\,R'\) lần lượt là giao điểm của mặt phẳng \(\left( {PQR} \right)\) với các cạnh \(CC',\,\,AA',\,\,BB'\).

Dễ dàng chứng minh được \(P',\,\,Q',\,\,R'\) tương ứng là trung điểm của các cạnh \(CC',\,\,AA',\,\,BB'\), đồng thời \(P,\,\,Q,\,\,R\) lần lượt là trung điểm của các cạnh \(Q'R',\,\,R'P',\,\,P'Q'\).

Đặt \(V = {V_{ABC.Q'R'P'}}\).

Ta có: \({S_{R'PQ}} = \dfrac{1}{4}{S_{R'Q'P'}}\) nên \({V_{B.R'PQ}} = \dfrac{1}{4}{V_{B.R'Q'P'}} \)\(= \dfrac{1}{4}.\dfrac{1}{3}V = \dfrac{1}{{12}}V\)

Tương tự ta có: \({V_{A.Q'PR}} = \dfrac{1}{{12}}V\).

Ta có: \({S_{MNC}} = {S_{QRP'}} = \dfrac{1}{4}{S_{ABC}}\) nên \({V_{CMN.P'QR}} = \dfrac{V}{4}\)

Vậy \(V{V_{PQRABMN}} = V - {V_{B.R'PQ}} - {V_{A.Q'PR}} - {V_{CMN.P'QR}} = V - 2.\dfrac{V}{{12}} - \dfrac{V}{4} = \dfrac{{7V}}{{12}} = \dfrac{7}{2}.\dfrac{1}{2}.12.6 = 21\).