Phương trình logarit và một số phương pháp giải

Kỳ thi ĐGNL ĐHQG Hồ Chí Minh

Đổi lựa chọn

Câu 21 Trắc nghiệm

Phương trình sau đây có bao nhiêu nghiệm\(\left( {{x^2} - 4} \right)\)\(\left( {{{\log }_2}x + {{\log }_3}x + {{\log }_4}x + ... + {{\log }_{19}}x - \log _{20}^2x} \right) = 0\)

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

$({x^2} - 4)({\log _2}x + {\log _3}x + {\log _4}x + ... + {\log _{19}}x - \log _{20}^2x) = 0(*)$

Đkxđ: $x>0$

$(*) \Leftrightarrow \left[ \begin{array}{l}x = 2(tm)\\x =  - 2(ktm)\\{\log _2}x + {\log _3}x + {\log _4}x + ... + {\log _{19}}x - \log _{20}^2x = 0(**)\end{array} \right.$

$\begin{array}{l}(**) \Leftrightarrow \dfrac{{\log {\rm{x}}}}{{\log 2}} + \dfrac{{\log {\rm{x}}}}{{\log 3}} + \dfrac{{\log {\rm{x}}}}{{\log 4}} + ... + \dfrac{{\log {\rm{x}}}}{{\log 19}} - {\left( {\dfrac{{\log {\rm{x}}}}{{\log 20}}} \right)^2} = 0\\ \Leftrightarrow \log {\rm{x}}(\dfrac{1}{{\log 2}} + \dfrac{1}{{\log 3}} + \dfrac{1}{{\log 4}} + ... + \dfrac{1}{{\log 19}} - \dfrac{{\log {\rm{x}}}}{{{{\log }^2}20}}) = 0\\ \Leftrightarrow \left[ \begin{array}{l}\log {\rm{x}} = 0\\\dfrac{1}{{\log 2}} + \dfrac{1}{{\log 3}} + \dfrac{1}{{\log 4}} + ... + \dfrac{1}{{\log 19}} - \dfrac{{\log {\rm{x}}}}{{{{\log }^2}20}} = 0\end{array} \right. \\ \Leftrightarrow \left[ \begin{array}{l}x = 1\\\dfrac{1}{{\log 2}} + \dfrac{1}{{\log 3}} + \dfrac{1}{{\log 4}} + ... + \dfrac{1}{{\log 19}} = \dfrac{{\log {\rm{x}}}}{{{{\log }^2}20}}\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = 1\\(\dfrac{1}{{\log 2}} + \dfrac{1}{{\log 3}} + \dfrac{1}{{\log 4}} + ... + \dfrac{1}{{\log 19}}){\log ^2}20 = \log {\rm{x}}\end{array} \right. \\ \Leftrightarrow \left[ \begin{array}{l}x = 1(tm)\\x = {10^{(\dfrac{1}{{\log 2}} + \dfrac{1}{{\log 3}} + \dfrac{1}{{\log 4}} + ... + \dfrac{1}{{\log 19}}){{\log }^2}20}}(tm)\end{array} \right.\end{array}$ 

Phương trình (*) có $3$ nghiệm.

Câu 22 Trắc nghiệm

Cho hàm số \(f\left( x \right) = {\log _2}\left( {\cos x} \right).\) Phương trình \(f'\left( x \right) = 0\) có bao nhiêu nghiệm trong khoảng \(\left( {0;2020\pi } \right)?\)

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

ĐKXĐ: \(\cos x > 0\)

Ta có: \(f\left( x \right) = {\log _2}\left( {\cos x} \right) \Rightarrow f'\left( x \right) = \dfrac{{ - \sin x}}{{\cos x.\ln 2}}\)

\(f'\left( x \right) = 0 \Leftrightarrow \)\(\dfrac{{ - \sin x}}{{\cos x.\ln 2}} = 0 \Leftrightarrow \tan x = 0 \Leftrightarrow x = k\pi ,\,k \in \mathbb{Z}\).

Với \(k\) chẵn, đặt \(k = 2m\,\,\left( {m \in \mathbb{Z}} \right)\), khi đó ta có \(x = m2\pi \,\,\left( {m \in \mathbb{Z}} \right)\).

Với \(k\) lẻ, đặt \(k = 2n + 1\,\,\left( {n \in \mathbb{Z}} \right)\), khi đó ta có \(x = \left( {2n + 1} \right)\pi  = \pi  + n2\pi \,\,\left( {n \in \mathbb{Z}} \right)\).

Kiểm tra ĐKXĐ:

\(x = m2\pi  \Rightarrow \cos x = 1 > 0\): thỏa mãn.

\(x = \pi  + k2\pi  \Rightarrow \cos x =  - 1 < 0\): loại.

Suy ra nghiệm của phương trình là \(x = m2\pi ,\,\,m \in \mathbb{Z}\).

Theo bài ra ta có: \(x \in \left( {0;2020\pi } \right) \Rightarrow 0 < m2\pi  < 2020\pi  \Leftrightarrow 0 < m < 1010 \Rightarrow \) Có 1009 giá trị nguyên của m thỏa mãn.

Vậy phương trình \(f'\left( x \right) = 0\) có 1009 nghiệm trong khoảng \(\left( {0;2020\pi } \right)\).

Câu 23 Trắc nghiệm

Có bao nhiêu số nguyên \(a \in \left( { - 2019;2019} \right)\) để phương trình \(\dfrac{1}{{\ln \left( {x + 5} \right)}} + \dfrac{1}{{{3^x} - 1}} = x + a\) có hai nghiệm phân biệt?

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

\(\dfrac{1}{{\ln \left( {x + 5} \right)}} + \dfrac{1}{{{3^x} - 1}} = x + a \Leftrightarrow f\left( x \right) = \dfrac{1}{{\ln \left( {x + 5} \right)}} + \dfrac{1}{{{3^x} - 1}} - x = a\,\,\left( * \right)\).

Xét hàm số \(f\left( x \right) = \dfrac{1}{{\ln \left( {x + 5} \right)}} + \dfrac{1}{{{3^x} - 1}} - x\).

ĐKXĐ: \(\left\{ \begin{array}{l}x + 5 > 0\\\ln \left( {x + 5} \right) \ne 0\\{3^x} - 1 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x >  - 5\\x + 5 \ne 1\\{3^x} \ne 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x >  - 5\\x \ne  - 4\\x \ne 0\end{array} \right.\)

\( \Rightarrow D = \left( { - 5; - 4} \right) \cup \left( { - 4;0} \right) \cup \left( {0; + \infty } \right)\).

Ta có:

$f'\left( x \right) = - \frac{1}{{\left( {x + 5} \right){{\ln }^2}\left( {x + 5} \right)}} - \frac{{{3^x}\ln 3}}{{{{\left( {{3^x} - 1} \right)}^2}}} - 1 < 0,\forall x \in D$

BBT:

Từ BBT suy ra phương trình (*) có 2 nghiệm \( \Leftrightarrow a \ge 4\).

Kết hợp ĐK \( \Rightarrow a \in \left\{ {4;...;2018} \right\}\). Vậy có 2015 giá trị của \(a\) thỏa mãn.

Câu 24 Trắc nghiệm

Giải phương trình: $\int\limits_0^2 {\left( {t - {{\log }_2}x} \right)dt = 2{{\log }_2}\dfrac{2}{x}} $ (ẩn $x$)

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Ta có: $\int\limits_0^2 {\left( {t - {{\log }_2}x} \right)dt}  = \left. {\left( {\dfrac{{{t^2}}}{2} - {{\log }_2}x.t} \right)} \right|_0^2 = 2 - 2{\log _2}x$

Phương trình: $2 - 2{\log _2}x = 2{\log _2}\dfrac{2}{x}$ có điều kiện là $x > 0$

$ \Leftrightarrow {\log _2}\dfrac{2}{x} + {\log _2}x = 1 \Leftrightarrow {\log _2}\left( {\dfrac{2}{x}.x} \right) = 1$ (luôn đúng)

Vậy tập nghiệm của phương trình là $(0; +\infty )$

Câu 25 Trắc nghiệm

Hỏi phương trình \(2{\log _3}\left( {\cot x} \right) = {\log _2}\left( {\cos x} \right)\) có bao nhiêu nghiệm trong khoảng \(\left( {0;2017\pi } \right)\).

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Điều kiện : \(\left\{ \begin{array}{l}\cot x > 0\\\cos x > 0\end{array} \right.(1)\).

Ta có : $2{\log _3}\left( {\cot x} \right) = {\log _2}\left( {\cos x} \right) \Leftrightarrow {\log _3}{\left( {\cot x} \right)^2} = {\log _2}\left( {\cos x} \right) = t$

$ \Rightarrow \left\{ \begin{array}{l}{\left( {\cot x} \right)^2} = {3^t}\\{\cos ^2}x = {4^t}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\dfrac{{{{\cos }^2}x}}{{{{\sin }^2}x}} = {3^t}\\{\cos ^2}x = {4^t}\end{array} \right.$

\( \Rightarrow \dfrac{{{4^t}}}{{1 - {4^t}}} = {3^t} \Leftrightarrow {4^t} - {3^t} + {12^t} = 0 \Leftrightarrow {\left( {\dfrac{4}{3}} \right)^t} + {4^t} = 1\)

Đặt \(f(t) = {\left( {\dfrac{4}{3}} \right)^t} + {\left( 4 \right)^t} \Rightarrow f'(t) = {\left( {\dfrac{4}{3}} \right)^t}\ln \dfrac{4}{3} + {\left( 4 \right)^t}\ln 4 > 0\) suy ra $f(t)= 1$ có tối đa $1$ nghiệm.

Nhận thấy $t=-1$ là nghiệm của phương trình \( \Rightarrow {\log _2}\left( {\cos x} \right) =  - 1 \Rightarrow \cos x = \dfrac{1}{2} \Rightarrow x =  \pm \dfrac{\pi }{3} + k2\pi  \Rightarrow x = \dfrac{\pi }{3} + k2\pi \)( do đk (1)).

Ta có : \(0 < \dfrac{\pi }{3} + k2\pi  < 2017\pi  \Leftrightarrow  - \dfrac{1}{6} < k < \dfrac{{3025}}{3}\). Do $k$ nguyên nên $k= 0, 1, …, 1008$.

Vậy phương trình có $1009$ nghiệm.

Câu 26 Trắc nghiệm

Hỏi có bao nhiêu giá trị \(m\)  nguyên trong đoạn \(\left[ { - 2017;2017} \right]\) để phương trình \(\log mx = 2\log \left( {x + 1} \right)\)  có nghiệm duy nhất?

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

ĐK: $x>-1;mx>0$

$\begin{array}{l}\log (m{\rm{x}}) = 2\log (x + 1) \Leftrightarrow m{\rm{x}} = {(x + 1)^2} \Leftrightarrow {x^2} + (2 - m)x + 1 = 0\\\Delta  = {m^2} - 4m + 4 - 4 = {m^2} - 4m\end{array}$

Để phương trình đã cho có nghiệm duy nhất thì có 2 TH:

TH1: Phương trình trên có nghiệm duy nhất: ${m^2} = 4m \Leftrightarrow \left[ \begin{array}{l}m = 0\\m = 4\end{array} \right..$

Tuy nhiên giá trị $m = 0$ loại do khi đó nghiệm là $x = -1$.

TH2: Phương trình trên có 2 nghiệm thỏa: ${x_1} \le  - 1 < {x_2}$

Nếu có ${x_1} =  - 1 \to 1 - (2 - m) + 1 = 0 \to m = 0$, thay lại vô lý

$\begin{array}{l}{x_1} <  - 1 < {x_2} \to ({x_1} + 1)({x_2} + 1) < 0 \Leftrightarrow {x_1}{x_2} + {x_1} + {x_2} + 1 < 0\\ \to 1 + m - 2 + 1 < 0 \Leftrightarrow m < 0.\end{array}$

Như vậy sẽ có các giá trị $-2017; - 2016; …… -1$ và $4$.

Có $2018 $ giá trị.

Câu 27 Trắc nghiệm

Gọi $x_1, x_2$ là các nghiệm của phương trình ${\left( {{{\log }_{\frac{1}{3}}}x} \right)^2} - \left( {\sqrt 3  + 1} \right){\log _3}x + \sqrt 3  = 0$. Khi đó tích $x_1, x_2$ bằng:

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

${\left( {{{\log }_{\frac{1}{3}}}x} \right)^2} - \left( {\sqrt 3  + 1} \right){\log _3}x + \sqrt 3  = 0$   điều kiện của phương trình là $x > 0$

$ \Leftrightarrow {\left( {{{\log }_3}x} \right)^2} - \left( {\sqrt 3  + 1} \right){\log _3}x + \sqrt 3  = 0$

Đặt $t = \log_{3}x$ , phương trình trở thành:

${t^2} - \left( {\sqrt 3  + 1} \right)t + \sqrt 3  = 0 \Rightarrow \left[ \begin{array}{l}t = 1\\t = \sqrt 3 \end{array} \right.$

$ \Rightarrow \left[ \begin{array}{l}{\log _3}x = 1\\{\log _3}x = \sqrt 3 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 3\\x = {3^{\sqrt 3 }}\end{array} \right. \Rightarrow {x_1}.{x_2} = {3.3^{\sqrt 3 }} = {3^{\sqrt 3  + 1}}$

Câu 28 Trắc nghiệm

Tìm $m$ để phương trình $m\ln \left( {1 - x} \right) - \ln x = m$ có nghiệm \(x \in (0;1)\)

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

+ Cô lập  \(m : m(\ln (1 - x) - 1) = \ln x \Rightarrow m = \dfrac{{\ln x}}{{\ln (1 - x) - 1}}\) với $1 > x > 0$ .

+ Nhận xét đáp án: ta thấy \(\dfrac{{\ln x}}{{\ln (1 - x) - 1}} > 0{\rm{   }},\forall 0 < x < 1\). Loại C và D

+ Tính giới hạn của \(y =\dfrac{{\ln x}}{{\ln (1 - x) - 1}}\) khi $x$ tiến dần tới $1$ thì thấy $y$ dần tiến tới $0$ . Loại B. 

Câu 29 Trắc nghiệm

Giả sử $m$ là số thực sao cho phương trình \(\log _3^2x - (m + 2){\log _3}x + 3m - 2 = 0\) có hai nghiệm \({x_1},{x_2}\) phân biệt thỏa mãn \({x_1}.{x_2} = 9\) .

Khi đó $m$ thỏa mãn tính chất nào sau đây?

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Đặt \(t = {\log _3}x\) suy ra phương trình trở thành \({t^2} - (m + 2)t + 3m - 2 = 0\)(*).

Để phương trình có hai nghiệm \({x_1};{x_2}\) thì (*) cũng có hai nghiệm \({t_1};{t_2}\) .

Phương trình (*) có 2 nghiệm phân biệt \({t_1};{t_2}\)

$ \Leftrightarrow \Delta  > 0\, \Leftrightarrow \,{\left( {m + 2} \right)^2} - 4\left( {3m - 2} \right) > 0\, \Leftrightarrow \left[ \begin{array}{l}m > 6\\m < 2\end{array} \right.$.

Ta có: $\left\{ \begin{array}{l}{x_1} = {3^{{t_1}}}\\{x_2} = {3^{{t_2}}}\end{array} \right. \Rightarrow {x_1}.{x_2} = {3^{{t_1} + {t_2}}} = 9 \Leftrightarrow {t_1} + {t_2} = 2.$

Theo hệ thức Vi-ét ta có: \({t_1} + {t_2} = m + 2\)

\( \Rightarrow m + 2 = 2 \Leftrightarrow m = 0\).

Suy ra \(m \in \left( { - 1;1} \right)\)

Câu 30 Trắc nghiệm

Số nghiệm của phương trình ${\log _3}\left| {{x^2} - \sqrt 2 x} \right| = {\log _5}\left( {{x^2} - \sqrt 2 x + 2} \right)$là

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Đặt ${x^2} - \sqrt 2 x = t$ khi đó ${\log _3}|t| = {\log _5}(t + 2)(t >  - 2;t \ne 0)$

Đặt ${\log _3}|t| = {\log _5}(t + 2) = a \Rightarrow \left\{ \begin{array}{l}|t| = {3^a}\\t + 2 = {5^a}\end{array} \right. $

$\Rightarrow \left| {{5^a} - 2} \right| = {3^a} \Leftrightarrow \left[ \begin{array}{l}{5^a} - 2 =  - {3^a}\\{5^a} - 2 = {3^a}\end{array} \right. \Rightarrow \left[ \begin{array}{l}{5^a} + {3^a} = 2(1)\\{5^a} = {3^a} + 2(2)\end{array} \right.$

Xét (1): $f(a) = {5^a} + {3^a} \Rightarrow f'(a) = {5^a}\ln 5 + {3^a}\ln 3 > 0(\forall a \in R)$ nên hàm số đồng biến trên $R$

Mặt khác $f(0) = 2$ do đó phương trình $f(a) = f(0)$ có 1 nghiệm duy nhất $a = 0 \Rightarrow t = -1$

Suy ra: ${x^2} - \sqrt 2 x + 1 = 0$ (vô nghiệm)

Xét (2) $ \Leftrightarrow {\left( {\dfrac{3}{5}} \right)^a} + 2.{\left( {\dfrac{1}{5}} \right)^a} = 1$.

Đặt $g(a) = {\left( {\dfrac{3}{5}} \right)^a} + 2.{\left( {\dfrac{1}{5}} \right)^a} \Rightarrow g'(a) = {\left( {\dfrac{3}{5}} \right)^a}\ln \dfrac{3}{5} + 2.{\left( {\dfrac{1}{5}} \right)^a}\ln \dfrac{1}{5} < 0(\forall a \in R)$

Nên hàm số $g(a)$ nghịch biến trên $R$ do đó phương trình $g(a) = 1$ có tối đa 1 nghiệm.

Mà $g(a) = g(1)$ nên $ a = 1$

Suy ra $t = 3 \Rightarrow {x^2} - \sqrt 2 x - 3 = 0$ có 2 nghiệm phân biệt thỏa mãn điều kiện

Vậy phương trình đã cho có $2$ nghiệm.

Câu 31 Trắc nghiệm

Cho \(a,\,\,b,\,\,c\) là các số thực dương khác \(1\) thỏa mãn \(\log _a^2b + \log _b^2c = {\log _a}\dfrac{c}{b} - 2{\log _b}\dfrac{c}{b} - 3.\) Gọi \(M,{\rm{ }}m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của \(P = {\log _a}b - {\log _b}c.\) Giá trị của biểu thức \(S = m - 3M\) bằng

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Ta có:

\(\begin{array}{l}\,\,\,\,\,\,\,\log _a^2b + \log _b^2c = {\log _a}\dfrac{c}{b} - 2{\log _b}\dfrac{c}{b} - 3\\ \Leftrightarrow \log _a^2b + \log _b^2c = {\log _a}c - {\log _a}b - 2{\log _b}c - 1\\ \Leftrightarrow \log _a^2b + \log _b^2c = {\log _b}c.{\log _a}b - {\log _a}b - 2{\log _b}c - 1\,\,\left( * \right)\end{array}\)

Đặt \({\log _a}b = x \Rightarrow {\log _b}c = x - P\).

Phương trình (*) \( \Leftrightarrow {x^2} + {\left( {x - P} \right)^2} = \left( {x - P} \right)x - x - 2\left( {x - P} \right) - 1\)

\(\begin{array}{l} \Leftrightarrow 2{x^2} - 2Px + {P^2} = {x^2} - Px - 3x + 2P - 1\\ \Leftrightarrow {x^2} - \left( {P - 3} \right)x + {P^2} - 2P + 1 = 0\,\,\,\left( {**} \right)\end{array}\)

Ta có: \(\Delta  = {\left( {P - 3} \right)^2} - 4\left( {{P^2} - 2P + 1} \right) =  - 3{P^2} + 2P + 5\)

Phương trình (**) có nghiệm \( \Leftrightarrow \Delta  \ge 0 \Leftrightarrow  - 3{P^2} + 2P + 5 \ge 0 \Leftrightarrow  - 1 \le P \le \dfrac{5}{3}\,\, \Rightarrow \left\{ \begin{array}{l}m =  - 1\\M = \dfrac{5}{3}\end{array} \right.\).

Vậy \(S = m - 3M =  - 1 - 3.\dfrac{5}{3} =  - 6\).

Câu 32 Trắc nghiệm

Cho các số thực \(a,\,\,b,\,\,c\) thuộc khoảng \(\left( {1; + \infty } \right)\) và thỏa mãn \(\log _{\sqrt a }^2b + {\log _b}c.{\log _b}\left( {\dfrac{{{c^2}}}{b}} \right) + 9{\log _a}c = 4{\log _a}b\). Giá trị của biểu thức \({\log _a}b + {\log _b}{c^2}\) bằng:

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Ta có:

\(\begin{array}{l}\,\,\,\,\,\,\log _{\sqrt a }^2b + {\log _b}c.{\log _b}\left( {\dfrac{{{c^2}}}{b}} \right) + 9{\log _a}c = 4{\log _a}b\\ \Leftrightarrow 4\log _a^2b + {\log _b}c.\left( {2{{\log }_b}c - 1} \right) + 9{\log _a}c = 4{\log _a}b\\ \Leftrightarrow 4\log _a^2b + 2\log _b^2c - {\log _b}c + 9{\log _a}b.{\log _b}c = 4{\log _a}b\,\,\left( * \right)\end{array}\)

Đặt \(x = {\log _a}b,\,\,y = {\log _b}c\) ta có: \(\left\{ \begin{array}{l}x = {\log _a}b > {\log _a}1 = 0\\y = {\log _b}c > {\log _b}1 = 0\end{array} \right.\,\,\left( {do\,\,a,b,c > 1} \right)\).

Khi đó phương trình (*) trở thành:

\(\begin{array}{l}\,\,\,\,\,\,4{x^2} + 2{y^2} - y + 9xy = 4x\\ \Leftrightarrow 4{x^2} + xy + 8xy + 2{y^2} - y - 4x = 0\\ \Leftrightarrow x\left( {4x + y} \right) + 2y\left( {4x + y} \right) - \left( {4x + y} \right) = 0\\ \Leftrightarrow \left( {4x + y} \right)\left( {x + 2y - 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}4x + y = 0\\x + 2y - 1 = 0\end{array} \right.\end{array}\)

TH1: \(y =  - 4x\) loại do \(x,\,\,y > 0\).

TH2: \(x + 2y - 1 = 0 \Leftrightarrow x + 2y = 1\), khi đó ta có: \({\log _a}b + {\log _b}{c^2} = x + 2y = 1\).

Câu 33 Trắc nghiệm

Biết \(a,\,\,b\) là các số thực sao cho \({x^3} + {y^3} = a{.10^{3z}} + b{.10^{2z}}\), đồng thời \(x,\,\,y,\,\,z\) là các số thực dương thỏa mãn \(\log \left( {x + y} \right) = z\) và \(\log \left( {{x^2} + {y^2}} \right) = z + 1\). Giá trị của \(\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}}\) thuộc khoảng:

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Theo bài ra ta có: \(\left\{ \begin{array}{l}\log \left( {x + y} \right) = z\\\log \left( {{x^2} + {y^2}} \right) = z + 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x + y = {10^z}\\{x^2} + {y^2} = {10.10^z}\end{array} \right. \Leftrightarrow {x^2} + {y^2} = 10\left( {x + y} \right)\).

Khi đó ta có:

\(\begin{array}{l}\,\,\,\,\,{x^3} + {y^3} = a{.10^{3z}} + b{.10^{2z}}\\ \Leftrightarrow \left( {x + y} \right)\left( {{x^2} + {y^2} - xy} \right) = a.{\left( {{{10}^z}} \right)^3} + b.{\left( {{{10}^z}} \right)^2}\\ \Leftrightarrow \left( {x + y} \right)\left( {{x^2} + {y^2} - xy} \right) = a.{\left( {x + y} \right)^3} + b.{\left( {x + y} \right)^2}\\ \Leftrightarrow {x^2} + {y^2} - xy = a{\left( {x + y} \right)^2} + b\left( {x + y} \right)\\ \Leftrightarrow {x^2} + {y^2} - xy = a\left( {{x^2} + 2xy + {y^2}} \right) + b.\dfrac{{{x^2} + {y^2}}}{{10}}\\ \Leftrightarrow {x^2} + {y^2} - xy = \left( {a + \dfrac{b}{{10}}} \right)\left( {{x^2} + {y^2}} \right) + 2a.xy\end{array}\)

Đồng nhất hệ số ta có \(\left\{ \begin{array}{l}1 = a + \dfrac{b}{{10}}\\ - 1 = 2a\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a =  - \dfrac{1}{2}\\b = 15\end{array} \right.\).

Vậy \(\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}} = 4 + \dfrac{1}{{225}} = \dfrac{{901}}{{225}} \approx 4,004 \in \left( {4;5} \right)\).