Nguyên hàm
Kỳ thi ĐGNL ĐHQG Hồ Chí Minh
Họ nguyên hàm của hàm số \(y=\dfrac{{2x + 3}}{{2{x^2} - x - 1}} \) là:
\(\dfrac{{2x + 3}}{{2{x^2} - x - 1}} = \dfrac{{2x + 3}}{{\left( {2x + 1} \right)\left( {x - 1} \right)}}\)
Do đó, ta cần biến đổi \(\dfrac{{2x + 3}}{{2{x^2} - x - 1}} = \dfrac{a}{{2x + 1}} + \dfrac{b}{{x - 1}}\) để tính được nguyên hàm.
Ta có:
\(\begin{array}{l}\dfrac{a}{{2x + 1}} + \dfrac{b}{{x - 1}} = \dfrac{{a\left( {x - 1} \right) + b\left( {2x + 1} \right)}}{{\left( {2x + 1} \right)\left( {x - 1} \right)}}\\ = \dfrac{{ax - a + 2bx + b}}{{\left( {2x + 1} \right)\left( {x - 1} \right)}} = \dfrac{{\left( {a + 2b} \right)x - a + b}}{{\left( {2x + 1} \right)\left( {x - 1} \right)}}\end{array}\)
\(\begin{array}{l} \Rightarrow \dfrac{{2x + 3}}{{2{x^2} - x - 1}} = \dfrac{{\left( {a + 2b} \right)x - a + b}}{{\left( {2x + 1} \right)\left( {x - 1} \right)}}\\ \Leftrightarrow \left\{ \begin{array}{l}a + 2b = 2\\ - a + b = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = - \dfrac{4}{3}\\b = \dfrac{5}{3}\end{array} \right.\end{array}\)
Do đó:
\(\int {\dfrac{{2x + 3}}{{2{x^2} - x - 1}}dx} {\rm{\;}}\)\( = \int {\left[ { - \dfrac{4}{3}.\dfrac{1}{{\left( {2x + 1} \right)}} + \dfrac{5}{3}.\dfrac{1}{{\left( {x - 1} \right)}}} \right]dx} {\rm{\;}}\)\( = {\rm{\;}} - \dfrac{4}{3}\int {\dfrac{1}{{\left( {2x + 1} \right)}}dx} {\rm{\;}} + \dfrac{5}{3}\int {\dfrac{1}{{\left( {x - 1} \right)}}dx} \)\( = {\rm{\;}} - \dfrac{4}{3}.\dfrac{1}{2}\ln \left| {2x + 1} \right| + \dfrac{5}{3}\ln \left| {x - 1} \right| + C\)\( = {\rm{\;}} - \dfrac{2}{3}\ln \left| {2x + 1} \right| + \dfrac{5}{3}\ln \left| {x - 1} \right| + C\)
Hàm số nào sau đây không là nguyên hàm của hàm số$f(x) = \dfrac{{x\left( {x + 2} \right)}}{{{{\left( {x + 1} \right)}^2}}}$?
Đáp án B: $\dfrac{{{x^2} - x - 1}}{{x + 1}}=\dfrac{{{x^2} -( x + 1)}}{{x + 1}}$$=\dfrac{{{x^2}}}{{x + 1}}-1$
Đáp án C: $\dfrac{{{x^2} + x + 1}}{{x + 1}}=\dfrac{{{x^2} +( x + 1)}}{{x + 1}}$$=\dfrac{{{x^2}}}{{x + 1}}+1$
Đáp án D: $\dfrac{{{x^2}}}{{x + 1}}$
Như thế, các hàm số ở ý B, C, D hơn kém nhau một số đơn vị do nên chúng là nguyên hàm của cùng một hàm số.
Một đám vi trùng tại ngày thứ \(t\) có số lượng \(N\left( t \right)\), biết rằng \(N'\left( t \right) = \dfrac{{4000}}{{1 + 0,5t}}\) và lúc đầu đám vi trùng có \(250000\) con. Hỏi số lượng vi trùng tại ngày thứ $10$ (lấy theo phần nguyên) là bao nhiêu?
Ta có: \( N(t)=\int {N'(t)dt} = \int {\dfrac{{4000}}{{0,5t + 1}}dt} \)\(= \dfrac{{4000}}{{0,5}}\ln \left| {0,5t + 1} \right| + C = 8000\ln \left| {0,5t + 1} \right| + C\).
Với \(t = 0\) thì \(250000 = 8000\ln 1 + C \)\(\Leftrightarrow C = 250000\).
Vậy \(N\left( t \right) = 8000\ln \left| {0,5t + 1} \right| + 250000 \)\(\Rightarrow N\left( {10} \right) \approx 264334\)
Cho hàm số $f\left( x \right)$ xác định và liên tục trên $\mathbb{R}$ và thỏa mãn đồng thời các điều kiện sau
$f\left( x \right) > 0;{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} f'\left( x \right) = \dfrac{{x.f\left( x \right)}}{{\sqrt {{x^2} + 1} }};{\mkern 1mu} {\mkern 1mu} \forall x \in \mathbb{R}$ và $f\left( 0 \right) = e.$ Giá trị của $f\left( {\sqrt 3 } \right)$ bằng
Ta có $f'\left( x \right) = \dfrac{{x.f\left( x \right)}}{{\sqrt {{x^2} + 1} }} \Leftrightarrow \dfrac{{f'\left( x \right)}}{{f\left( x \right)}} = \dfrac{x}{{\sqrt {{x^2} + 1} }}$$ \Leftrightarrow \int {\dfrac{{f'\left( x \right)}}{{f\left( x \right)}}{\rm{d}}x} = \int {\dfrac{x}{{\sqrt {{x^2} + 1} }}{\rm{d}}x} $
$ \Leftrightarrow \int {\dfrac{{{\rm{d}}\left( {f\left( x \right)} \right)}}{{f\left( x \right)}}} = \int {\dfrac{{{\rm{d}}\left( {{x^2} + 1} \right)}}{{2\sqrt {{x^2} + 1} }}} = \sqrt {{x^2} + 1} + C$$ \Leftrightarrow \ln f\left( x \right) = \sqrt {{x^2} + 1} + C \Leftrightarrow f\left( x \right) = {e^{\sqrt {{x^2}{\kern 1pt} + {\kern 1pt} 1} {\kern 1pt} + {\kern 1pt} {\kern 1pt} C}}$
Mà $f\left( 0 \right) = e$$ \Rightarrow $${e^{C{\kern 1pt} + {\kern 1pt} 1}} = e \Rightarrow C = 0.$
Vậy $f\left( {\sqrt 3 } \right) = {e^2}.$
Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) thỏa mãn các điều kiện: \(f\left( 0 \right) = 2\sqrt 2 \), \(f\left( x \right) > 0,\forall x \in \mathbb{R}\) và \(f\left( x \right).f'\left( x \right) = \left( {2x + 1} \right)\sqrt {1 + {f^2}\left( x \right)} ,\,\forall x \in \mathbb{R}\). Khi đó giá trị \(f\left( 1 \right)\) bằng
Ta có: \(f\left( x \right).f'\left( x \right) = \left( {2x + 1} \right)\sqrt {1 + {f^2}\left( x \right)} \)
\( \Rightarrow \dfrac{{f\left( x \right).f'\left( x \right)}}{{\sqrt {1 + {f^2}\left( x \right)} }} = 2x + 1 \Rightarrow \int {\dfrac{{f\left( x \right).f'\left( x \right)}}{{\sqrt {1 + {f^2}\left( x \right)} }}dx} = \int {\left( {2x + 1} \right)dx} \)
Tính \(\int {\dfrac{{f\left( x \right).f'\left( x \right)}}{{\sqrt {1 + {f^2}\left( x \right)} }}dx} \) ta đặt \(\sqrt {1 + {f^2}\left( x \right)} = t \Rightarrow 1 + {f^2}\left( x \right) = {t^2} \Rightarrow 2f\left( x \right)f'\left( x \right)dx = 2tdt\) \( \Rightarrow f\left( x \right)f'\left( x \right)dx = tdt\)
Thay vào ta được \(\int {\dfrac{{f\left( x \right).f'\left( x \right)}}{{\sqrt {1 + {f^2}\left( x \right)} }}dx} = \int {\dfrac{{tdt}}{t}} = \int {dt} = t + C = \sqrt {1 + {f^2}\left( x \right)} + C\)
Do đó \(\sqrt {1 + {f^2}\left( x \right)} + C = {x^2} + x\).
\(f\left( 0 \right) = 2\sqrt 2 \Rightarrow \sqrt {1 + {{\left( {2\sqrt 2 } \right)}^2}} + C = 0 \Leftrightarrow C = - 3\).
Từ đó:
\(\begin{array}{l}\sqrt {1 + {f^2}\left( x \right)} - 3 = {x^2} + x \Rightarrow \sqrt {1 + {f^2}\left( 1 \right)} - 3 = 1 + 1 \Leftrightarrow \sqrt {1 + {f^2}\left( 1 \right)} = 5\\ \Leftrightarrow 1 + {f^2}\left( 1 \right) = 25 \Leftrightarrow {f^2}\left( 1 \right) = 24 \Leftrightarrow f\left( 1 \right) = \sqrt {24} \end{array}\)