Hai vòi nước cùng chảy vào một bể cạn. Vòi thứ nhất chảy riêng trong \(10\) giờ đầy bể, vòi thứ hai chảy riêng trong \(8\) giờ đầy bể. Vòi thứ ba tháo nước ra sau \(5\) giờ thì bể cạn. Nếu bể đang cạn, ta mở cả ba vòi thì sau \(1\) giờ chảy được bao nhiêu phần bể?
Trong \(1\) giờ, vòi thứ nhất chảy được là: \(1:10 = \dfrac{1}{{10}}\) (bể)
Trong \(1\) giờ, vòi thứ hai chảy được là: \(1:8 = \dfrac{1}{8}\) (bể)
Trong \(1\) giờ, vòi thứ ba tháo được là: \(1:5 = \dfrac{1}{5}\) (bể)
Sau \(1\) giờ, lượng nước trong bể có là:
\(\dfrac{1}{{10}} + \dfrac{1}{8} - \dfrac{1}{5} = \dfrac{1}{{40}}\) (bể)
Cho \(x\) là số thỏa mãn \(x + \dfrac{4}{{5.9}} + \dfrac{4}{{9.13}} + \dfrac{4}{{13.17}} + ... + \dfrac{4}{{41.45}} = \dfrac{{ - 37}}{{45}}\) . Chọn kết luận đúng:
\(x + \dfrac{4}{{5.9}} + \dfrac{4}{{9.13}} + \dfrac{4}{{13.17}} + ... + \dfrac{4}{{41.45}} = \dfrac{{ - 37}}{{45}}\)
\(x + \dfrac{1}{5} - \dfrac{1}{9} + \dfrac{1}{9} - \dfrac{1}{{13}} + ... + \dfrac{1}{{41}} - \dfrac{1}{{45}} = - \dfrac{{37}}{{45}}\)
\(x + \dfrac{1}{5} - \dfrac{1}{{45}} = - \dfrac{{37}}{{45}}\)
\(x + \dfrac{8}{{45}} = - \dfrac{{37}}{{45}}\)
\(x = - \dfrac{{37}}{{45}} - \dfrac{8}{{45}}\)
\(x = - 1\)
Vì \( - 1\) là số nguyên âm nên đáp án A đúng.
Cho \(P = \dfrac{1}{{{2^2}}} + \dfrac{1}{{{3^2}}} + ... + \dfrac{1}{{{{2002}^2}}} + \dfrac{1}{{{{2003}^2}}}\) . Chọn câu đúng.
\(P = \dfrac{1}{{{2^2}}} + \dfrac{1}{{{3^2}}} + ... + \dfrac{1}{{{{2002}^2}}} + \dfrac{1}{{{{2003}^2}}}\)
\( < \dfrac{1}{{1.2}} + \dfrac{1}{{2.3}} + ... + \dfrac{1}{{2001.2002}} + \dfrac{1}{{2002.2003}}\)
\( = \dfrac{1}{1} - \dfrac{1}{2} + \dfrac{1}{2} - \dfrac{1}{3} + ... + \dfrac{1}{{2001}} - \dfrac{1}{{2002}} + \dfrac{1}{{2002}} - \dfrac{1}{{2003}}\)
\( = 1 - \dfrac{1}{{2003}} = \dfrac{{2002}}{{2003}} < 1\)
Vậy \(P < 1\)