Cho $A = \left( {6888:56-{{11}^2}} \right).152 + 13.72 + 13.28$ và $B = \left[ {5082:\left( {{{17}^{29}}:{{17}^{27}}-{{16}^2}} \right) + 13.12} \right]:31 + {9^2}$ . Tính \(A - 2B.\)
Ta có
$\begin{array}{l}A = \left( {6888:56-{{11}^2}} \right).152 + 13.72 + 13.28\\\,\,\,\,\,\, = \left( {6888:56 - 121} \right).152 + 13.72 + 13.28\\\,\,\,\,\,\, = \left( {123 - 121} \right).152 + 13.72 + 13.28\\\,\,\,\,\,\, = 2.152 + 13.\left( {72 + 28} \right)\\\,\,\,\,\,\, = 2.152 + 13.100\\\,\,\,\,\,\, = 304 + 1300\\\,\,\,\,\,\, = 1604\end{array}$ $\begin{array}{l}B = \left[ {5082:\left( {{{17}^{29}}:{{17}^{27}}-{{16}^2}} \right) + 13.12} \right]:31 + {9^2}\\\,\,\,\,\, = \left[ {5082:\left( {{{17}^{29 - 27}}-{{16}^2}} \right) + 13.12} \right]:31 + {9^2}\\\,\,\,\,\, = \left[ {5082:\left( {{{17}^2}-{{16}^2}} \right) + 13.12} \right]:31 + {9^2}\\\,\,\,\,\, = \left[ {5082:\left( {289 - 256} \right) + 13.12} \right]:31 + {9^2}\\\,\,\,\,\, = \left( {5082:33 + 13.12} \right):31 + {9^2}\\\,\,\,\,\, = \left( {154 + 156} \right):31 + {9^2}\\\,\,\,\,\, = 310:31 + 81\\\,\,\,\,\, = 10 + 81 = 91.\end{array}$
Suy ra \(A - 2B = 1422.\)
Có bao nhiêu số tự nhiên \(x\) biết \(x \vdots 5;x \vdots 6\) và \(0 < x < 100\).
Do \(x \vdots 5;x \vdots 6 \Rightarrow x \in BC\left( {5;6} \right) = \left\{ {0;30;60;90;120;...} \right\}\)
Mà \(0 < x < 100\) nên \(x \in \left\{ {30;60;90} \right\}\).
Vậy \(x \in \left\{ {30;60;90} \right\}\).
Cho $A = 18 + 36 + 72 + 2x$. Tìm giá trị của $x$ biết rằng $A$ chia hết cho $9$ và $45 < x < 55$
Ta có $A = 18 + 36 + 72 + 2x$ mà $A \vdots 9;18 \vdots 9;36 \vdots 9;72 \vdots 9 \Rightarrow 2x \vdots 9 \Rightarrow x \vdots 9$
Mà $45 < x < 55 \Rightarrow x = 54$
Vậy $x = 54$.
Một trường học có khoảng từ 100 đến 150 học sinh khối 6. Khi xếp thành 10 hàng, 12 hàng, 15 hàng đều vừa đủ. Vậy hỏi số học sinh khối 6 của trường đó là bao nhiêu?
Gọi số học sinh khối 6 là \(x\left( {x \in {N^*}} \right)\) (học sinh)
Theo bài ra ta có:
\(x \vdots 10,x \vdots 12;x \vdots 15 \Rightarrow x \in BC\left( {10;12;15} \right)\) và \(100 \le x \le 150\).
Ta có
$\begin{array}{l}10 = 2.5;12 = {2^2}.3;15 = 3.5\\ \Rightarrow BCNN(10;12;15) = {2^2}.3.5 = 60\\ \Rightarrow BC\left( {10;12;15} \right) = \left\{ {0;60;120;180;...} \right\}\\ \Rightarrow x \in \left\{ {0;60;120;180;...} \right\} \end{array}$
Mà \(100 \le x \le 150\) nên \(x = 120\).
Vậy số học sinh khổi 6 là $120$ bạn.
So sánh: \({202^{303}}\) và \({303^{202}}\)
Ta có:
\(\)\(\)\(\begin{array}{l}{202^{303}} = {202^{3.101}} = {\left( {{{202}^3}} \right)^{101}}\\{303^{202}} = {303^{2.101}} = {\left( {{{303}^2}} \right)^{101}}\end{array}\)
Ta so sánh \({202^3}\) và \({303^2}\)
\(\begin{array}{l}{202^3} = {\left( {2.101} \right)^3} = {2^3}{.101^3} = {2^3}{.101^{1 + 2}} = {2^3}{.101.101^2} = {8.101.101^2} = {808.101^2}\\{303^2} = {\left( {3.101} \right)^2} = {3^2}{.101^2} = {9.101^2}\end{array}\)
Vì \(9 < 808\) nên \({9.101^2} < {808.101^2}\) hay \({303^2} < {202^3}\)
Do đó \({\left( {{{303}^2}} \right)^{101}} < {\left( {{{202}^3}} \right)^{101}}\)
Vậy \({303^{202}} < {202^{303}}\) .
Một buổi liên hoan ban tổ chức đã mua tất cả 840 cái bánh, 2352 cái kẹo và 560 quả quýt chia đều ra các đĩa, mỗi đĩa gồm cả bánh, kẹo và quýt. Tính số đĩa nhiều nhất mà ban tổ chức phải chuẩn bị?
Gọi số đĩa cần chẩn bị là x cái \(\left( {x \in {N^*}} \right)\)
Vì số bánh, kẹo và quýt được chia đều vào các đĩa nên: $840\;\, \vdots x{\rm{ }};{\rm{ }}2352\,\; \vdots \;x{\rm{ }};{\rm{ }}560\;\, \vdots \;x$
Và $x$ là lớn nhất nên $x = $ƯCLN$\left( {840;2352;560} \right)$
Ta có: \(840 = {2^3}.3.5.7;560 = {2^4}.5.7;2352 = {2^4}{.3.7^2}\)
Suy ra ƯCLN$\left( {840;{\rm{ }}2352;{\rm{ }}560} \right){\rm{ }} = \;{2^3}.7\; = 56$
Vậy số đĩa nhiều nhất cần chuẩn bị là $56$ .
Số tự nhiên $x$ được cho bởi:\({5^x} + {5^{x + 2}} = 650\). Giá trị của $x$ là
\(\begin{array}{l}{5^x} + {5^{x + 2}} = 650\\{5^x} + {5^x}{.5^2} = 650\\{5^x} + {5^x}.25 = 650\\{5^x}.\left( {1 + 25} \right) = 650\\{5^x}.26 = 650\\{5^x} = 650:26\\{5^x} = 25\\{5^x} = {5^2}\\x = 2\end{array}\)
Giá trị của \(A = 28.231 + 69.28 + 72.231 + 69.72\) gần nhất với số nào dưới đây?
Ta có:
\(\begin{array}{l}28.231 + 69.28 + 72.231 + 69.72\\ = \left( {28.231 + 69.28} \right) + \left( {72.231 + 69.72} \right)\\ = 28.\left( {231 + 69} \right) + 72.\left( {231 + 69} \right)\\ = 28.300 + 72.300\\ = 300.\left( {28 + 72} \right)\\ = 300.100\\ = 30000\end{array}\)
Nhận thấy số 30000 gần với số 30005 nhất trong các đáp án nên chọn A.
Tìm $x$ biết $\left( {2x-130} \right):4 + 213 = {5^2} + 193$
$\begin{array}{l}\,\,\,\,\,\,\;\left( {2x-130} \right):4 + 213 = {5^2} + 193\\\,\,\,\,\,\,\left( {2x-130} \right):4 + 213 = 25 + 193\\\,\,\,\,\,\,\left( {2x-130} \right):4 + 213 = 218\\\,\,\,\,\,\,\left( {2x-130} \right):4= 218 - 213\\\,\,\,\,\,\,\left( {2x-130} \right):4= 5\\\,\,\,\,\,\,\,2x-130= 5.4\\\,\,\,\,\,\,\,2x-130= 20\\\,\,\,\,\,\,\,2x= 20 + 130\\\,\,\,\,\,\,2x= 150\\\,\,\,\,\,\,\,\,\,x= 150:2\\\,\,\,\,\,\,\,\,x= 75\end{array}$
Cho \({x_1}\) là số thỏa mãn \({x^3} - {2^3} = {2^5} - \left( {{3^{16}}:{3^{14}} + {2^8}:{2^6}} \right)\) và \({x_2}\) là số thỏa mãn \(2448:\left[ {158 - 7.{{\left( {x - 6} \right)}^3}} \right] = 24\). Tính \({x_1}.{x_2}.\)
Ta có
\(\begin{array}{l} + )\,{x^3} - {2^3} = {2^5} - \left( {{3^{16}}:{3^{14}} + {2^8}:{2^6}} \right)\\{x^3} - {2^3} = {2^5} - \left( {{3^{16 - 14}} + {2^{8 - 6}}} \right)\\{x^3} - {2^3} = {2^5} - \left( {{3^2} + {2^2}} \right)\\{x^3} - {2^3} = {2^5} - \left( {9 + 4} \right)\\{x^3} - 8 = 32 - 13\\{x^3} - 8 = 19\\{x^3} = 19 + 8\\{x^3} = 27\\{x^3} = {3^3}\\x = 3\end{array}\)
Suy ra \({x_1} = 3.\)
\(\begin{array}{l}{\rm{ + )}}\,2448:\left[ {158 - 7.{{\left( {x - 6} \right)}^3}} \right] = 24\\158 - 7.{\left( {x - 6} \right)^3} = 2448:24\\158 - 7.{\left( {x - 6} \right)^3} = 102\\7.{\left( {x - 6} \right)^3} = 158 - 102\\7.{\left( {x - 6} \right)^3} = 56\\{\left( {x - 6} \right)^3} = 56:7\\{\left( {x - 6} \right)^3} = 8 = {2^3}\\x - 6 = 2\\x = 2 + 6\\x = 8\end{array}\)
Suy ra \({x_2} = 8\)
Từ đó ta có \({x_1} = 3;{x_2} = 8 \Rightarrow {x_1}.{x_2} = 24.\)
Tìm một số có hai chữ số biết rằng khi viết thêm chữ số $0$ vào giữa hai chữ số của số đó thì được số mới gấp $7$ lần số đã cho.
Gọi số có hai chữ số cần tìm là \(\overline {ab} \left( {0 < a \le 9;0 \le b \le 9};\, a,b \in N \right)\).
Khi viết thêm chữ số $0$ vào giữa hai chữ số ta được số mới là \(\overline {a0b} \) .
Theo bài ra ta có:
\(\begin{array}{l}\overline {a0b} = 7.\overline {ab} \\100.a + b = 7.\left( {10.a + b} \right)\\100.a + b = 70.a + 7.b\\100.a - 70.a = 7.b - b\\30.a = 6.b\\5.a = b\end{array}\)
Vì $a,b$ là các chữ số và \(a \ne 0\) nên \(a = 1;b = 5\) .
Vậy số cần tìm là $15$.
Biết 4 số tự nhiên liên tiếp mà tổng bằng 2010. Số nhỏ nhất trong 4 số đó là
Gọi \(n \in \mathbb{N}\) ta có các số: n; n+1; n+2; n+3 là 4 số tự nhiên liên tiếp.
Theo đề bài ta có:
\(\begin{array}{l}n + \left( {n + 1} \right) + \left( {n + 2} \right) + \left( {n + 3} \right) = 2010\\4.n + 6 = 2010\\4n= 2010 - 6\\4n= 2004\\n = 2004:4\\n = 501.\end{array}\)
Vậy 4 số tự nhiên đó là 501; 502; 503; 504.
Số nhỏ nhất là 501.
Cần bao nhiêu chữ số để đánh số trang (bắt đầu từ trang $1$) của một cuốn sách có $1031$ trang?
Ta chia các số trang của cuốn sách thành 4 nhóm:
+ Nhóm các số có $1$ chữ số (từ trang $1$ đến trang $9$): số chữ số cần dùng là $9$.
+ Nhóm các số có hai chữ số (từ trang $10$ đến trang $99$): số trang sách là: \(\left( {99 - 10} \right):1 + 1 = 90\), số chữ số cần dùng là: \(90.2 = 180\) .
+ Nhóm các số có $3$ chữ số (từ trang $100$ đến trang $999$): số trang sách là: \(\left( {999 - 100} \right):1 + 1 = 900\), số chữ số cần dùng để đánh số trang nhóm này là: \(900.3 = 2700\).
+Nhóm các số có $4$ chữ số (từ trang $1000$ đến trang $1031$): số trang sách là: \(\left( {1031 - 1000} \right):1 + 1 = 32\) ; số chữ số cần dùng là \(32.4 = 128\) .
Vậy tổng số chữ số cần dùng để đánh số trang cuốn sách đó là: \(9 + 180 + 2700 + 128 = 3017\)
Cho \(P = 1 + {5^3} + {5^6} + {5^9} + ... + {5^{99}}\). Chọn đáp án đúng.
\(\begin{array}{l}P = 1 + {5^3} + {5^6} + {5^9} + ... + {5^{99}}\\{5^3}.P = {5^3}.\left( {1 + {5^3} + {5^6} + {5^9} + ... + {5^{99}}} \right) = {5^3} + {5^6} + {5^9} + ... + {5^{99}} + {5^{102}}\\125.P = {5^3} + {5^6} + {5^9} + ... + {5^{99}} + {5^{102}}\\ \Rightarrow 125.P - P = \left( {{5^3} + {5^6} + {5^9} + ... + {5^{99}} + {5^{102}}} \right) - \left( {1 + {5^3} + {5^6} + {5^9} + ... + {5^{99}}} \right)\\ \Rightarrow 124.P = {5^{102}} - 1\end{array}\)
Cho 2 số: $14n + 3$ và $21n + 4$ với $n$ là số tự nhiên, chọn đáp án đúng.
Gọi \(d = UCLN\left( {14n + 3;21n + 4} \right)\) ta có:
\(\begin{array}{l}\left. \begin{array}{l}14n + 3\, \vdots \,d\\21n + 4 \, \vdots \, d\end{array} \right\} \Rightarrow \left. \begin{array}{l}3\left( {14n + 3} \right) \vdots \, d\\2\left( {21n + 4} \right) \vdots d\end{array} \right\} \Rightarrow \left. \begin{array}{l}42n + 9 \,\vdots \, d\\42n + 8 \, \vdots \, d\end{array} \right\}\\\Rightarrow\left( {42n + 9} \right) - \left( {42n + 8} \right) \vdots d \Rightarrow 1 \vdots d \Rightarrow d = 1\end{array}\)
Vậy \(ƯCLN\left( {14n + 3;21n + 4} \right) = 1\) hay hai số đó là hai số nguyên tố cùng nhau.