Phân tích đa thức thành nhân tử bằng cách đặt nhân tử chung

Bài viết trình bày phương pháp đặt nhân tử chung để phân tích đa thức thành nhân tử và một số dạng toán thường gặp.

1. Các kiến thức cần nhớ

Định nghĩa

Phân tích đa thức thành nhân tử (hay thừa số) là biến đổi đa thức đó thành tích của những đa thức.

\(AB + AC = A\left( {B + C} \right)\)

Ví dụ: \(3{x^3} - {x^2} = {x^2}\left( {3x - 1} \right)\)

Chú ý: Nhiều khi để làm xuất hiện nhân tử chung ta cần đổi dấu các hạng tử  (lưu ý tới tính chất \(A =  - \left( { - A} \right)\))

2. Các dạng toán thường gặp

Dạng 1: Phân tích đa thức thành nhân tử

Phương pháp:

Sử dụng cách đặt nhân tử chung

Dạng 2: Tìm ${\bf{x}}$

Phương pháp:

Phân tích đa thức thành nhân tử để đưa về dạng \(A.B = 0 \Leftrightarrow \left[ \begin{array}{l}A = 0\\B = 0\end{array} \right.\)

Dạng 3: Tính giá trị của biểu thức thỏa mãn điều kiện cho trước.

Phương pháp:

Ta biến đổi biểu thức đã cho để có thể sử dụng được điều kiện của giả thiết.

Từ đó tính giá trị của biểu thức.

Chú ý: Để tính giá trị biểu thức tại \(x = {x_0}\) ta thay \(x = {x_0}\) vào biểu thức rồi thực hiện phép tính.

Câu hỏi trong bài