Đối xứng trục

Bài viết trình bày định nghĩa đối xứng trục, hai hình đối xứng qua một đường thẳng, hình có trục đối xứng và các dạng toán thường gặp

I. Các kiến thức cần nhớ

1. Đối xứng trục

Định nghĩa: Hai điểm $A,B$ gọi là đối xứng với nhau qua đường thẳng $d$ nếu $d$ là đường trung trực của đoạn thẳng nối hai điểm đó.

Đối xứng trục - ảnh 1

Quy ước: Nếu điểm $M$ nằm trên đường thẳng $d$ thì điểm đối xứng với $M$ qua đường thẳng $d$ cũng là điểm $M$ .

2. Hai hình đối xứng qua một đường thẳng

Định nghĩa: Hai hình gọi là đối xứng với nhau qua đường thẳng $d$ nếu mỗi điểm thuộc hình này đối xứng với một điểm thuộc hình kia qua đường thẳng $d$ và ngược lại. Đường thẳng $d$ gọi là trục đối xứng của hai hình đó.

Đối xứng trục - ảnh 2

Chú ý: Nếu hai đoạn thẳng (góc, tam giác) đối xứng với nhau qua một đường thẳng thì chúng bằng nhau.

3. Hình có trục đối xứng

Đường thẳng $d$ gọi là trục đối xứng của hình $H$ nếu điểm đối xứng với mỗi điểm thuộc hình $H$ qua đường thẳng $d$ cũng thuộc hình $H$ . Ta nói hình $H$ có trục đối xứng.

Đối xứng trục - ảnh 3

Định lý: Đường thẳng đi qua trung điểm hai đáy của hình thang cân là trục đối xứng của hình thang cân đó.

Đối xứng trục - ảnh 4

II. Các dạng toán thường gặp

Dạng 1: Tính độ dài cạnh, chu vi tam giác, tứ giác

Phương pháp:

Sử dụng chú ý: “Nếu hai đoạn thẳng (góc, tam giác) đối xứng với nhau qua một đường thẳng thì chúng bằng nhau.”

Dạng 2: Chứng minh (nhận biết) các hình đối xứng nhau qua một đường thẳng.

Phương pháp:

Ta sử dụng định nghĩa: “ Hai điểm $A,B$ gọi là đối xứng với nhau qua đường thẳng $d$ nếu $d$ là đường trung trực của đoạn thẳng nối hai điểm đó.”

Câu hỏi trong bài