Những hằng đẳng thức đáng nhớ (tiếp)

Bài viết trình bày các hằng đẳng thức lập phương một tổng, lập phương một hiệu, tổng hai lập phương, hiệu hai lập phương và các dạng toán thường gặp.

1. Các kiến thức cần nhớ

d. Lập phương của một tổng

\({\left( {A + B} \right)^3} \) \(= {A^3} + 3{A^2}B + 3A{B^2} + {B^3}\)

Ví dụ: \({\left( {x + 2} \right)^3} = {x^3} + 3{x^2}.2 + 3x{.2^2} + {2^3} \) \(= {x^3} + 6{x^2} + 12x + 8\)

e. Lập phương của một hiệu

\({\left( {A - B} \right)^3} \) \(= {A^3} - 3{A^2}B + 3A{B^2} - {B^3}\)

Ví dụ: \({\left( {x - 2} \right)^3} = {x^3} - 3{x^2}.2 + 3x{.2^2} - {2^3} \) \(= {x^3} - 6{x^2} + 12x - 8\)

f. Tổng hai lập phương

\({A^3} + {B^3} = \left( {A + B} \right) \left( {{A^2} - AB + {B^2}} \right)\)

Ví  dụ: \({x^3} + 8 = {x^3} + {2^3} = \left( {x + 2} \right)\left( {{x^2} - 2x + 4} \right)\)

g. Hiệu hai lập phương

 \({A^3} - {B^3} = \left( {A - B} \right)\left( {{A^2} + AB + {B^2}} \right)\)

Ví dụ: \({x^3} - 8 = {x^3} - {2^3} = \left( {x - 2} \right)\left( {{x^2} + 2x + 4} \right)\)

2. Các dạng toán thường gặp

Dạng 1: Rút gọn biểu thức

Phương pháp:

Sử dụng hằng đẳng thức và phép nhân các đa thức để khai triển và rút gọn biểu thức

Dạng 2: Tìm \({\bf{x}}\)

Phương pháp:

Dùng các hằng đẳng thức và phép nhân các đa thức để biến đổi về dạng tìm \(x\) thường gặp.

Dạng 3: Tính giá trị biểu thức tại \(x = {x_0}\) hoặc tính giá trị của biểu thức thỏa mãn điều kiện cho trước

Phương pháp:

Dùng hằng đẳng thức và phép nhân đa thức để biến đổi biểu thức cho trước

Thay \(x = {x_0}\) vào biểu thức rồi tính giá trị của nó hoặc sử dụng điều kiện của giả thiết.