Cho \(\left( {a - b} \right)\left( {a + 2b} \right) - \left( {b - a} \right)\left( {2a - b} \right) - \left( {a - b} \right)\left( {a + 3b} \right).\) Khi đặt nhân tử chung \(\left( {a - b} \right)\) ra ngoài thì nhân tử còn lại là
Trả lời bởi giáo viên
Ta có \(\left( {a - b} \right)\left( {a + 2b} \right) - \left( {b - a} \right)\left( {2a - b} \right) - \left( {a - b} \right)\left( {a + 3b} \right)\)\( = \left( {a - b} \right)\left( {a + 2b} \right) + \left( {a - b} \right)\left( {2a - b} \right) - \left( {a - b} \right)\left( {a + 3b} \right)\)
\( = \left( {a - b.} \right)\left( {a + 2b + 2a - b - \left( {a + 3b} \right)} \right)\) \( = \left( {a - b} \right)\left( {3a + b - a - 3b} \right) \)\(= \left( {a - b} \right)\left( {2a - 2b} \right)\)
Vậy khi đặt nhân tử chung \(\left( {a - b} \right)\) ra ngoài ta được biểu thức còn lại là \(2a - 2b\) .
Hướng dẫn giải:
+ Sử dụng tính chất \(A = - \left( { - A} \right)\) để làm xuất hiện nhân tử chung
+ Sử dụng phương pháp đặt nhân tử chung để phân tích đa thức thành nhân tử