Tích phân (phương pháp đổi biến)

Bài viết trình bày phương pháp đổi biến số và một số dạng toán tích phân áp dụng phương pháp đổi biến số.

1. Kiến thức cần nhớ

- Vi phân:

\(\begin{array}{l}t = u\left( x \right) \Rightarrow dt = u'\left( x \right)dx\\u\left( t \right) = v\left( x \right) \Rightarrow u'\left( t \right)dt = v'\left( x \right)dx\end{array}\)

- Công thức đổi biến: \(\int\limits_a^b {f\left[ {u\left( x \right)} \right]u'\left( x \right)dx}  = \int\limits_{t\left( a \right)}^{t\left( b \right)} {f\left( t \right)dt} \)

2. Một số dạng toán thường gặp

Dạng 1: Tính tích phân bằng phương pháp đổi biến \(t = u\left( x \right)\).

- Bước 1: Đặt \(t = u\left( x \right)\), đổi cận \(\left\{ \begin{array}{l}x = a \Rightarrow t = u\left( a \right) = a'\\x = b \Rightarrow t = u\left( b \right) = b'\end{array} \right.\) .

- Bước 2: Tính vi phân \(dt = u'\left( x \right)dx\).

- Bước 3: Biến đổi \(f\left( x \right)dx\) thành \(g\left( t \right)dt\).

- Bước 4: Tính tích phân \(\int\limits_a^b {f\left( x \right)dx}  = \int\limits_{a'}^{b'} {g\left( t \right)dt} \).

Ví dụ: Tính tích phân \(\int\limits_0^{\sqrt 3 } {2x\sqrt {{x^2} + 1} dx} \).

Giải:

Đặt \(t = \sqrt {{x^2} + 1}  \Rightarrow {t^2} = {x^2} + 1 \) \( \Rightarrow 2tdt = 2xdx\).

Đổi cận \(\left\{ \begin{array}{l}x = 0 \Rightarrow t = 1\\x = \sqrt 3  \Rightarrow t = 2\end{array} \right.\)

Do đó: \(\int\limits_0^{\sqrt 3 } {2x\sqrt {{x^2} + 1} dx}  = \int\limits_1^2 {t.2tdt}  = \left. {\dfrac{2}{3}{t^3}} \right|_1^2 = \dfrac{2}{3}\left( {{2^3} - {1^3}} \right) = \dfrac{{14}}{3}\).

Dạng 2: Tính tích phân bằng phương pháp đổi biến \(x = u\left( t \right)\).

- Bước 1: Đặt \(x = u\left( t \right)\), đổi cận \(\left\{ \begin{array}{l}x = a \Rightarrow t = a'\\x = b \Rightarrow t = b'\end{array} \right.\).

- Bước 2: Lấy vi phân 2 vế \(dx = u'\left( t \right)dt\).

- Bước 3: Biến đổi \(f\left( x \right)dx = f\left( {u\left( t \right)} \right).u'\left( t \right)dt = g\left( t \right)dt\).

- Bước 4: Tính nguyên hàm theo công thức \(\int\limits_a^b {f\left( x \right)dx}  = \int\limits_{a'}^{b'} {g\left( t \right)dt} \)

Ví dụ: Cho $I = \int\limits_0^{\dfrac{\pi }{2}} {\sqrt {1 - {x^2}} {\rm{d}}x} $, nếu đặt $x = \sin t$ thì:

A. $I = 2\int\limits_0^1 {\left( {1 + \cos 2t} \right){\rm{d}}t} $

B. $I = \int\limits_0^1 {\dfrac{{1 - \cos 2t}}{2}{\rm{d}}t} $

C. $I = \int\limits_0^1 {\dfrac{{1 + \cos 2t}}{2}{\rm{d}}t} $

D. $I = \int\limits_0^1 {\dfrac{{\cos 2t - 1}}{2}{\rm{d}}t} $

Giải:

Đặt $x = \sin t \Leftrightarrow dx = \cos t\,dt$ và $1 - {x^2} = 1 - {\sin ^2}t = {\cos ^2}t$

Đổi cận \(\left\{ \begin{array}{l}x = 0 \Rightarrow t = 0\\x = \dfrac{\pi }{2} \Rightarrow t = 1\end{array} \right.\)

Suy ra

$I = \int\limits_0^{\dfrac{\pi }{2}} {\sqrt {1 - {x^2}} {\rm{d}}x}  = \int\limits_0^1 {\sqrt {{{\cos }^2}t} \cos t{\rm{d}}t}  $ $= \int\limits_0^1 {{{\cos }^2}t{\rm{d}}t}  = \int\limits_0^1 {\dfrac{{1 + \cos 2t}}{2}{\rm{d}}t} $

Chọn C.

Chú ý:

Các dấu hiệu thường dùng phương pháp trên là:

Tích phân (phương pháp đổi biến) - ảnh 1
Câu hỏi trong bài