Trong các phân số \(\dfrac{{14}}{{18}}\,\,;\,\,\dfrac{{24}}{{26}}\,\,;\,\,\dfrac{{26}}{{ - 28}}\,\,;\,\,\dfrac{{ - 28}}{{30}}\,\,;\,\,\dfrac{{72}}{{78}}\) có bao nhiêu phân số bằng phân số \(\dfrac{{12}}{{13}}\) ?
\(\dfrac{{14}}{{18}} = \dfrac{7}{9}\,;\,\dfrac{{24}}{{26}} = \dfrac{{12}}{{13}}\,\,;\,\dfrac{{72}}{{78}} = \dfrac{{12}}{{13}}.\)
Ta có \(\dfrac{{26}}{{ - 28}} < 0 < \dfrac{{12}}{{13}};\,\dfrac{{ - 28}}{{30}} < 0 < \dfrac{{12}}{{13}}\) ; \(\dfrac{7}{9} = \dfrac{{91}}{{117}} < \dfrac{{108}}{{117}} = \dfrac{{12}}{{13}}\)
Vậy có 2 phân số bằng phân số \(\dfrac{{12}}{{13}}\) là: \(\dfrac{{24}}{{26}}\,;\,\dfrac{{72}}{{78}}.\)
Cho số hữu tỉ \(x = \dfrac{{a - 3}}{2}.\) Với giá trị nào của $a$ thì $x$ là số nguyên dương;
Để \(x = \dfrac{{a - 3}}{2}\) là số nguyên dương thì \(\left( {a - 3} \right) > 0\) và \(\left( {a - 3} \right) \vdots 2\)
Giả sử \(a - 3 = 2k\,\left( {k \in {\mathbb{N}^*}} \right)\) suy ra \(a = 3 + 2k\,\left( {k \in {\mathbb{N}^*}} \right)\)
Cho số hữu tỉ \(y = \dfrac{{2a - 1}}{{ - 3}}.\) Với giá trị nào của $a$ thì $y$ không là số dương và cũng không là số âm.
Vì số hữu tỉ \(0\) không là số dương cũng không là số âm nên để \(y = \dfrac{{2a - 1}}{{ - 3}}\) không dương cũng không âm thì
\(y = 0\) suy ra \(\dfrac{{2a - 1}}{{ - 3}} = 0\) \( \Rightarrow 2a - 1 = 0 \Rightarrow a = \dfrac{1}{2}\) .
Tập hợp các số hữu tỉ được kí hiệu là:
Tập hợp các số hữu tỉ được kí hiệu là: Q
Số \(\dfrac{9}{4}\) có số đối là:
Số đối của \(\dfrac{9}{4}\) là \( - \dfrac{9}{4} = \dfrac{9}{{ - 4}}\)
Khẳng định nào sau đây là đúng?
+) Nếu a > b thì –a < -b nên A sai
+) Nếu a < b, a < c thì chưa thể so sánh được b với c nên B sai
+) Nếu a < b, c > b ( hay b < c) thì a < c ( tính chất bắc cầu) nên C đúng
+) Số hữu tỉ gồm: số hữu tỉ âm, số hữu tỉ dương và số 0 nên D sai.