0/50
Bắt đầu Thoát
00:00:00

Đề thi tư duy định lượng - Đề số 4

Kỳ thi ĐGNL ĐHQG Hà Nội

Đổi lựa chọn

Kết quả:

0/50

Thời gian làm bài: 00:00:00

Câu 1 Trắc nghiệm

Các loại nước của nhãn hiệu Vfresh chiếm tỉ lệ người dùng cao nhất đặc biệt là sản phẩm nước cam ép chiếm bao nhiêu phần trăm?

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b
Câu 2 Trắc nghiệm

Để hai đồ thị $y = - {x^2} - 2x + 3$ và $y = {x^2} - m$ có hai điểm chung thì:

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c
Câu 3 Tự luận

Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(2a\), tam giác \(SAB\) cân tại \(S\) và nằm trong mặt phẳng vuông góc với đáy. Góc giữa hai mặt phẳng \(\left( {SCD} \right)\) và \(\left( {ABCD} \right)\) bằng \(\varphi \) và \(\sin \varphi  = \dfrac{{\sqrt 5 }}{5}\). Khoảng cách từ điểm \(A\) đến mặt phẳng \(\left( {SCD} \right)\) là \(\dfrac{{2\sqrt 5 a}}{k}\)

Tìm $k$.

Đáp án: k=

Câu hỏi tự luận
Bạn chưa làm câu này

Đáp án: k=

Câu 4 Trắc nghiệm

Hệ phương trình \(\left\{ \begin{array}{l}{x^2} = 3x - y\\{y^2} = 3y - x\end{array} \right.\) có bao nhiêu nghiệm?

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b
Câu 5 Trắc nghiệm

Tập nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l}2x - 1 \ge 0\\4 - 3x \ge 0\end{array} \right.\) là

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b
Câu 6 Trắc nghiệm

Trong mặt phẳng với hệ tọa độ $Oxy,$ cho $\Delta ABC$ cân có đáy là $BC.$  Đỉnh $A$  có tọa độ là các số dương, hai điểm $B$  và $C$  nằm trên trục $Ox,$  phương trình cạnh $AB:$ $y = 3\sqrt 7 (x - 1)$. Biết chu vi của $\Delta ABC$ bằng $18,$  tìm tọa độ các đỉnh $A,B,C.$

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a
Câu 7 Trắc nghiệm

Với điều kiện nào của \(m\)  thì phương trình sau đây là phương trình đường tròn \({x^2} + {y^2} - 2(m + 2)x + 4my + 19m - 6 = 0\) ?

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c
Câu 9 Trắc nghiệm

Độ dài $3$ cạnh của một tam giác vuông lập thành một cấp số cộng . Nếu trung bình cộng ba cạnh bằng $6$ thì công sai của cấp số cộng này là:

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d
Câu 10 Tự luận

Một thầy giáo có 20 quyển sách khác nhau gồm 7 quyển sách Toán, 5 quyển sách Lí và 8 quyển sách Hóa. Thầy chọn ra 9 quyển sách để tặng cho học sinh. Hỏi thầy giáo đó có bao nhiêu cách chọn sao cho số sách còn lại của thầy có đủ 3 môn?

Đáp án:

Câu hỏi tự luận
Bạn chưa làm câu này

Đáp án:

Câu 11 Trắc nghiệm

Gọi \(S\) là tập hợp tất cả các số tự nhiên có 4 chữ số phân biệt. Chọn ngẫu nhiên 1 số từ \(S\). Xác suất chọn được số lớn hơn \(2500\) là

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c
Câu 12 Trắc nghiệm

Cho hình vuông $A_{1} B_{1} C_{1} D_{1}$ có cạnh bằng a và có diện tích $S_{1}$. Nối bốn trung điểm $A_{2}, B_{2}, C_{2}, D_{2}$ ta được hình vuông thứ hai có diện tích $S_{2}$. Tiếp tục như thế, ta được hình vuông $A_{3} B_{3} C_{3} D_{3}$ có diện tích $S_{3}, \ldots$ Tính tổng $S_{1}+S_{2}+\ldots$ bằng

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b
Câu 13 Trắc nghiệm

Cho hàm số \(y = \dfrac{1}{3}{x^3} - \dfrac{m}{2}{x^2} + mx + 5\). Tìm tất cả các giá trị của tham số m để \(y' \ge 0,\forall x \in \mathbb{R}\).

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c
Câu 14 Trắc nghiệm

Cho hình chóp \(S.ABC{\rm{D}}\) có đáy \(ABC{\rm{D}}\) là hình bình hành. Gọi điểm \(M\) là điểm thuộc cạnh \(S{\rm{D}}\) sao cho \(SM = \dfrac{2}{3}SD\) (minh họa như hình vẽ). Mặt phẳng chứa \(AM\) và song song với \(B{\rm{D}}\) cắt cạnh \(SC\) tại \(K\). Tỷ số \(\dfrac{{SK}}{{SC}}\) bằng

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c
Câu 15 Tự luận

Cho lăng trụ đều \(ABC.A'B'C'\) có tất cả các cạnh bằng a. Gọi \(\alpha \) là góc giữa mặt phẳng \(\left( {A'BC} \right)\) và mặt phẳng \(\left( {ABC} \right)\). Biết \(\tan \alpha = \dfrac{{k\sqrt 3 }}{3}\). Tìm số nguyên $k$.

Đáp án: 

Câu hỏi tự luận
Bạn chưa làm câu này

Đáp án: 

Câu 16 Trắc nghiệm

Nếu \(\int\limits_1^2 {\dfrac{{dx}}{{x + 3}}} \) được viết dưới dạng \(\ln \dfrac{a}{b}\) với \(a,b\) là các số tự nhiên và ước chung lớn nhất của \(a,b\) là \(1\). Chọn khẳng định sai:

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c
Câu 17 Trắc nghiệm

Gọi $S$ là diện tích của Ban Công của một ngôi nhà có dạng như hình vẽ ($S$ được giới hạn bởi parabol $\left( P \right)$  và trục $Ox$). Giá trị của S là:

Đề thi tư duy định lượng - Đề số 4 - ảnh 1
Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c
Câu 18 Tự luận

Cho \(\int_0^{\frac{\pi }{{18}}} f (\sin (3x))\cos (3x)dx = 3\) và \(\int_{\frac{1}{2}}^2 f (1 - x)dx = 4\). Tính \(I = \int_{ - 1}^0 f (x)d\)

$I=$

Câu hỏi tự luận
Bạn chưa làm câu này

$I=$

Câu 19 Trắc nghiệm

Cho tích phân $I = \int\limits_1^2 {\dfrac{{x + \ln x}}{{{{\left( {x + 1} \right)}^3}}}{\rm{d}}x}  = a + b.\ln 2 - c.\ln 3$ với $a,b,c \in R$, tỉ số $\dfrac{c}{a}$ bằng

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d
Câu 20 Trắc nghiệm

Thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi các đường \(y = {x^2} + 1;x = 0\) và tiếp tuyến của đồ thị hàm số \(y = {x^2} + 1\) tại điểm \(A\left( {1;2} \right)\) quanh trục $Ox$ là

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d
Câu 21 Trắc nghiệm

Một người vay ngân hàng một số tiền với lãi suất mỗi tháng là $1,12\% $. Biết cuối mỗi tháng người đó phải trả cho ngân hàng $3.000.000$ đồng và trả trong $1$ năm thì hết nợ. Số tiền người đó vay là:

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a
Câu 22 Trắc nghiệm

Tập nghiệm của bất phương trình \({3^{\sqrt {2x}  + 1}} - {3^{x + 1}} \le {x^2} - 2x\) là:

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d
Câu 23 Trắc nghiệm

Phương trình ${\log _2}\left( {x - 3} \right) + 2{\log _4}3.{\log _3}x = 2$ có tất cả bao nhiêu nghiệm?

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a
Câu 24 Tự luận

Tìm tất cả các giá trị của tham số \(m\) để hàm số \(y =  - {x^3} - 3{x^2} + mx + 2\) có cực đại và cực tiểu?

Đáp án:

Câu hỏi tự luận
Bạn chưa làm câu này

Đáp án:

Câu 25 Tự luận

Tìm giá trị của m để hàm số \(y =  - {x^2} + 2x + m - 5\) đạt giá trị lớn nhất bằng 6.

Đáp án: m=

Câu hỏi tự luận
Bạn chưa làm câu này

Đáp án: m=

Câu 26 Trắc nghiệm

Cho hình chóp S.ABCDABCD là hình chữ nhật, \(AB = 2a,\)\(AD = a\)\(\left( {a > 0} \right)\). M là trung điểm của AB, tam giác SMC vuông tại S, \(\left( {SMC} \right) \bot \left( {ABCD} \right),\)\(SM\) tạo với đáy góc \(60^\circ \). Thể tích của khối chóp S.ABCD là:

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a
Câu 27 Trắc nghiệm

Cho số phức $z = 2 + 3i$. Tìm số phức \(w = \left( {3 + 2i} \right)z + 2\overline z \)

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b
Câu 28 Trắc nghiệm

Biết rằng \(z\) là số phức có môđun nhỏ nhất thỏa mãn \(\left( {1 - z} \right)\left( {\bar z + 2i} \right)\) là số thực. Số phức \(z\) là:

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d
Câu 29 Tự luận

Với số phức \(z\) thỏa mãn \(\left| {z - 2 + i} \right| = 4\), tập hợp các điểm biểu diễn các số phức \(z\) là một đường tròn. Tìm bán kính \(R\) của đường tròn đó.

Đáp án: R=

Câu hỏi tự luận
Bạn chưa làm câu này

Đáp án: R=

Câu 30 Trắc nghiệm

Cho số phức $z$ thỏa mãn $\left( {1 + i} \right)z = 3-i$. Hỏi điểm biểu diễn của $z$ là điểm nào trong các điểm $M,N,P,Q$ ở hình bên ?

Đề thi tư duy định lượng - Đề số 4 - ảnh 1
Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b
Câu 31 Trắc nghiệm

Trong không gian với hệ toạ độ $Oxyz$, cho hai mặt phẳng  $\left( P \right):x + 2y + 2z + 11 = 0$  và  $\left( Q \right):x + 2y + 2z + 2 = 0$ . Tính khoảng cách giữa $\left( P \right)$ và $\left( Q \right)$.

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d
Câu 32 Trắc nghiệm

Trong không gian $Oxyz$, cho ba mặt phẳng $(P): x+y+z-1=0$, $(Q): 2 x+m y+2 z+3=0$ và $(R):-x+2 y+n z=0$. Tính tổng $m+2 n$, biết $(P) \perp(R)$ và $(P) / /(Q)$

Bạn đã chọn sai | Đáp án đúng:

0

Bạn đã chọn đúng | Đáp án đúng:

0

Bạn chưa làm câu này | Đáp án đúng:

0

Câu 33 Trắc nghiệm

Trong không gian \(Oxyz\) cho hai điểm \(A\left( {0; - 2;3} \right),B\left( {1;0; - 1} \right)\). Tính sin góc hợp bởi hai véc tơ \(\overrightarrow {OA} ,\overrightarrow {OB} \).

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d
Câu 34 Trắc nghiệm

Trong không gian với hệ tọa độ Oxyz cho điểm \(A( - 2;2; - 2)\) và điểm \(B(3; - 3;3)\). Điểm \(M\) thay đổi trong không gian thỏa mãn \(\dfrac{{MA}}{{MB}} = \dfrac{2}{3}\). Điểm \(N(a;b;c)\) thuộc mặt phẳng \((P): - x + 2y - 2z + 6 = 0\) sao cho MN nhỏ nhất. Tính tổng \(T = a + b + c\).

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b
Câu 35 Trắc nghiệm

Trong một mạch điện kín nếu mạch ngoài thuần điện trở RN thì hiệu suất của nguồn điện có điện trở r được tính bởi biểu thức:

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c
Câu 36 Trắc nghiệm

Trong không gian \(Oxyz\), cho đường thẳng  \(d:\dfrac{x}{{ - 2}} = \dfrac{{y - 1}}{1} = \dfrac{z}{1}\) và mặt phẳng \(\left( P \right):2x - y + 2z - 2 = 0.\) Có bao nhiêu điểm \(M\) thuộc d  sao cho M cách đều gốc tọa độ O và mặt phẳng \(\left( P \right)\)?

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d
Câu 37 Tự luận

Trong không gian \(Oxyz,\) cho điểm \(M\left( {1;\,\,6; - 3} \right)\) và mặt phẳng \(\left( P \right):\,\,\,2x - 2y + z - 2 = 0.\)  Khoảng cách từ \(M\) đến \(\left( P \right)\) bằng:

Đáp án: 

Câu hỏi tự luận
Bạn chưa làm câu này

Đáp án: 

Câu 38 Trắc nghiệm

Trong không gian Oxyz, cho hai đường thẳng chéo nhau \({d_1}:\dfrac{{x - 2}}{2} = \) \(\dfrac{{y - 6}}{{ - 2}} = \dfrac{{z + 2}}{1}\) và \({d_2}:\dfrac{{x - 4}}{1} = \dfrac{{y + 1}}{3} = \dfrac{{z + 2}}{{ - 2}}\). Phương trình mặt phẳng \((P)\) chứa \({d_1}\) và \((P)\) song song với đường thẳng \({d_2}\) là

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a
Câu 39 Trắc nghiệm

Cho tam giác \(ABC\) có tọa độ \(3\) đỉnh \(A\left( {1;2;3} \right),B\left( {0; - 1;1} \right)\) và \(C\left( { - 1;1;1} \right)\). Diện tích tam giác là:

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b
Câu 40 Trắc nghiệm

Cho một cái bể nước hình hộp chữ nhật có ba kích thước $2m,3m,2m$ lần lượt là chiều dài, chiều rộng, chiều cao của lòng trong đựng nước của bể. Hàng ngày nước ở trong bể được lấy ra bởi một cái gáo nước hình trụ có chiều cao là $5cm$ và bán kính đường tròn đáy là $4cm$. Trung bình một ngày được múc ra $170$ gáo nước để sử dụng (Biết mỗi lần múc là múc đầy gáo). Hỏi sau bao nhiêu ngày thì bể hết nước biết rằng ban đầu bể đầy nước?

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b
Câu 41 Trắc nghiệm

Cho lăng trụ đứng \(ABC.A'B'C'\) với $ABC$ là tam giác vuông cân tại $C$ có \(AB = a\) , mặt bên \(ABB'A'\) là hình vuông. Mặt phẳng qua trung điểm $I$ của $AB$ và vuông góc với \(AB'\) chia khối lăng trụ thành 2 phần. Tính thể tích mỗi phần?

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c
Câu 42 Trắc nghiệm

Cho hàm số \(y =  - {x^3} + \left( {2m - 1} \right){x^2} - \left( {{m^2} - 1} \right)x + 2019\). Hỏi có bao nhiêu giá trị nguyên của tham số \(m\) thuộc khoảng \(\left( { - 2019;2019} \right)\) để hàm số nghịch biến trên khoảng \(\left( {2; + \infty } \right)\)?

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c
Câu 43 Trắc nghiệm

Số điểm cực trị của hàm số \(y = \left| {{x^2} - 3x + 2} \right|\) là:

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b
Câu 44 Tự luận

Hàm số \(y = \left( {{x^2} - 1} \right){\left( {3x - 2} \right)^3}\) có bao nhiêu điểm cực đại?

Đáp án:

Câu hỏi tự luận
Bạn chưa làm câu này

Đáp án:

Câu 45 Trắc nghiệm

Hàm số \(f\left( x \right) = \left| {\dfrac{x}{{{x^2} + 1}} - m} \right|\) (với \(m\) là tham số thực) có nhiều nhất bao nhiêu điểm cực trị?

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d
Câu 46 Trắc nghiệm

Cho hình tứ diện đều \(ABCD\) có độ dài các cạnh bằng \(1\). Gọi \(A',\,\,B',\,\,C',\,\,D'\) lần lượt là điểm đối xứng của \(A,\,\,B,\,\,C,\,\,D\) qua các mặt phẳng \(\left( {BCD} \right),\,\,\left( {ACD} \right),\,\,\left( {ABD} \right),\,\,\left( {ABC} \right)\). Tính thể tích của khối tứ diện \(A'B'C'D'\).

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a
Câu 47 Trắc nghiệm

Cho hàm số $y = f\left( x \right) = \dfrac{{{x^3}}}{3} - m{x^2} - 6mx - 9m + 12$ có đồ thị hàm số $\left( {{C_m}} \right)$. Khi tham số m thay đổi, các đồ thị $\left( {{C_m}} \right)$ đều tiếp xúc với một đường thẳng cố định. Đường thẳng này có phương trình:

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d
Câu 48 Tự luận

Xét các số thực dương \(a\) và \(b\) thỏa mãn \({\log _3}\left( {1 + ab} \right) = \dfrac{1}{2} + {\log _3}\left( {b - a} \right)\). Giá trị nhỏ nhất của biểu thức \(P = \dfrac{{\left( {1 + {a^2}} \right)\left( {1 + {b^2}} \right)}}{{a\left( {a + b} \right)}}\) bằng:

Đáp án:

Câu hỏi tự luận
Bạn chưa làm câu này

Đáp án:

Câu 49 Trắc nghiệm

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) có bảng biến thiên như hình vẽ:

Số nghiệm của phương trình \(\left| {f\left( {f\left( x \right)} \right)} \right| = 2\) là:

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c
Câu 50 Trắc nghiệm

Gọi \(M,\,\,N\) lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(f\left( x \right) = \left| {x - 3} \right|\sqrt {x + 1} \) trên đoạn \(\left[ {0;4} \right]\). Tính\(M + 2N\).

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a