Kết quả:
0/10
Thời gian làm bài: 00:00:00
Rút gọn phân thức \(\dfrac{{5{x^2} - 10xy + 5{y^2}}}{{{x^2} - {y^2}}}\) ta được:
Phân thức \(\dfrac{{13 - 4x}}{{{x^3} + 64}}\) xác định khi:
Rút gọn phân thức \(\dfrac{{{{\left( {a + b} \right)}^2} - {c^2}}}{{a + b + c}}\) ta được phân thức có tử là
Chọn câu sai. Với đa thức \(B \ne 0\) ta có
Các phân thức $\dfrac{{3x + 1}}{{{{\left( {x - 2} \right)}^2}}},\dfrac{{2x - 1}}{{{x^2} + 4x + 4}},\dfrac{1}{{2 - x}}$ có mẫu chung là:
Cho \(\dfrac{{4{x^2} + 3x - 7}}{A} = \dfrac{{4x + 7}}{{x + 3}}\) \(\left( {x \ne - 3;x \ne \dfrac{{ - 7}}{4}} \right)\) . Khi đó đa thức \(A\) là
Rút gọn phân thức $\dfrac{{{{\left( {{a^4} - {b^4}} \right)}^3}}}{{\left( {b + a} \right)\left( {{a^2} + {b^2}} \right){{\left( {a - b} \right)}^3}}}$ ta được :
Tìm giá trị nhỏ nhất của biểu thức \(Q = \dfrac{{18}}{{4x - 4{{\rm{x}}^2} +7}}\).
Để có các phân thức có cùng mẫu, ta cần điền vào các chỗ trống
$\dfrac{{x - 1}}{{{x^2}\left( {x + 1} \right)}} = \dfrac{{x - 1}}{{...}};\dfrac{{3x}}{{x + 1}} = \dfrac{{...}}{{{x^2}\left( {x + 1} \right)}}$ các đa thức lần lượt là
Cho $\dfrac{2}{{x + 2}} = \dfrac{{...}}{{2{x^2} + 4x}};\dfrac{1}{{2x}} = \dfrac{{...}}{{2{x^2} + 4x}}$. Điền vào chỗ trống để được các phân thức có cùng mẫu. Hãy chọn câu đúng.