Rút gọn phân thức $\dfrac{{{{\left( {{a^4} - {b^4}} \right)}^3}}}{{\left( {b + a} \right)\left( {{a^2} + {b^2}} \right){{\left( {a - b} \right)}^3}}}$ ta được :
Trả lời bởi giáo viên
Ta có $\dfrac{{{{\left( {{a^4} - {b^4}} \right)}^3}}}{{\left( {b + a} \right)\left( {{a^2} + {b^2}} \right){{\left( {a - b} \right)}^3}}}$$ = \dfrac{{{{\left[ {\left( {{a^2} - {b^2}} \right).\left( {{a^2} + {b^2}} \right)} \right]}^3}}}{{\left( {b + a} \right)\left( {{a^2} + {b^2}} \right){{\left( {a - b} \right)}^3}}} = \dfrac{{{{\left[ {\left( {a - b} \right)\left( {a + b} \right).\left( {{a^2} + {b^2}} \right)} \right]}^3}}}{{\left( {b + a} \right)\left( {{a^2} + {b^2}} \right){{\left( {a - b} \right)}^3}}}$
\( = \dfrac{{{{\left( {a - b} \right)}^3}{{\left( {a + b} \right)}^3}.{{\left( {{a^2} + {b^2}} \right)}^3}}}{{\left( {b + a} \right)\left( {{a^2} + {b^2}} \right){{\left( {a - b} \right)}^3}}} = {\left( {{a^2} + {b^2}} \right)^2}{\left( {a + b} \right)^2}\) .
Hướng dẫn giải:
- Phân tích tử số và mẫu số thành nhân tử.
- Xác định nhân tử chung.
- Chia cả tử và mẫu cho nhân tử chung.
Giải thích thêm:
Một số em có thể sai khi thực hiện phép rút gọn cuối chẳng hạn rút gọn sai \(\dfrac{{{{\left( {{a^2} + {b^2}} \right)}^3}}}{{{a^2} + {b^2}}} = {a^2} + {b^2}\) dẫn đến sai kết quả.