Kết quả:
0/25
Thời gian làm bài: 00:00:00
Phương trình bậc nhất một ẩn có dạng
Trong các khẳng định sau, số khẳng định đúng là:
a) Tập nghiệm của phương trình \(\dfrac{{{x^2} + 3x}}{x} = 0\) là \(\left\{ {0; - 3} \right\}\).
b) Tập nghiệm của phương trình \(\dfrac{{{x^2} - 4}}{{x - 2}} = 0\) là \(\left\{ { - 2} \right\}\).
c) Tập nghiệm của phương trình \(\dfrac{{x - 8}}{{x - 7}} = \dfrac{1}{{7 - x}} + 8\) là \(\left\{ 0 \right\}\).
Chu vi một mảnh vườn hình chữ nhật là \(45\,m\) . Biết chiều dài hơn chiều rộng \(5\,m\) . Nếu gọi chiều rộng mảnh vườn là \(x\) \(\left( {x > 0;\,{\rm{m}}} \right)\) thì Phương trình của bài toán là
Số thứ nhất gấp $6$ lần số thứ hai. Nếu gọi số thứ nhất là $x$ thì số thứ hai là:
Các nghiệm của phương trình \(\left( {2 + 6x} \right)\left( { - {x^2} - 4} \right) = 0\) là:
Hãy chọn câu đúng. Điều kiện xác định của phương trình \(\dfrac{x}{{x - 2}} - \dfrac{{2x}}{{{x^2} - 1}} = 0\) là
Phương trình \(2x - 3 = 12 - 3x\) có bao nhiêu nghiệm?
Phương trình $x - 12 = 6 - x$ có nghiệm là:
Phương trình: \(\left( {4 + 2x} \right)\left( {x - 1} \right) = 0\) có nghiệm là:
Phương trình \(\dfrac{{6x}}{{9 - {x^2}}} = \dfrac{x}{{x + 3}} - \dfrac{3}{{3 - x}}\) có nghiệm là
Một hình chữ nhật có chu vi $372m$ nếu tăng chiều dài $21m$ và tăng chiều rộng $10m$ thì diện tích tăng $2862{m^2}$. Chiều dài của hình chữ nhật là:
Hai phương trình nào sau đây là hai phương trình tương đương?
Gọi \({x_0}\) là nghiệm của phương trình \(2.\left( {x - 3} \right) + 5x\left( {x - 1} \right) = 5{x^2}\). Chọn khẳng định đúng.
Gọi \({x_1}\) là nghiệm của phương trình ${x^3} + 2{\left( {x - 1} \right)^2} - 2\left( {x - 1} \right)\left( {x + 1} \right) = {x^3} + x - 4 - \left( {x - 4} \right)$ và \({x_2}\) là nghiệm của phương trình $x + \dfrac{{2x - 7}}{2} = 5 - \dfrac{{x + 6}}{2} + \dfrac{{3x + 1}}{5}$. Tính \({x_1}.{x_2}\)
Tổng các nghiệm của phương trình \(\left( {{x^2} - 4} \right)\left( {x + 6} \right)\left( {x - 8} \right) = 0\) là:
Chọn khẳng định đúng.
Nghiệm lớn nhất của phương trình \(\left( {{x^2} - 1} \right)\left( {2x - 1} \right) = \left( {{x^2} - 1} \right)\left( {x + 3} \right)\) là
Cho hai biểu thức : \(A = 1 + \dfrac{1}{{2 + x}}\) và \(B = \dfrac{{12}}{{{x^3} + 8}}\) . Tìm $x$ sao cho \(A = B\) .
Cho phương trình $\dfrac{1}{{x - 1}} - \dfrac{7}{{x - 2}} = \dfrac{1}{{\left( {x - 1} \right)\left( {2 - x} \right)}}$ . Bạn Long giải phương trình như sau:
Bước 1: ĐKXĐ $x \ne 1;\,x \ne 2$
Bước 2: $\dfrac{1}{{x - 1}} - \dfrac{7}{{x - 2}} = \dfrac{1}{{\left( {x - 1} \right)\left( {2 - x} \right)}}$\( \Leftrightarrow \dfrac{{x - 2}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} - \dfrac{{7\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \dfrac{{ -1}}{{\left( {x - 1} \right)\left( {x - 2} \right)}}\)
Bước 3: \( \Rightarrow x - 2 - 7x + 7 = - 1 \Leftrightarrow - 6x = - 6 \Leftrightarrow x = 1\)
Vậy tập nghiệm của phương trình là \(S = \left\{ 1 \right\}\).
Chọn câu đúng.
Cho phương trình \(\left( 1 \right)\): \(\dfrac{1}{x} + \dfrac{2}{{x - 2}} = 0\) và phương trình \(\left( 2 \right)\): \(\dfrac{{x - 1}}{{x + 2}} - \dfrac{x}{{x - 2}} = \dfrac{{5x - 2}}{{4 - {x^2}}}\). Khẳng định nào sau đây là đúng.
Một tổ sản xuất theo kế hoạch mỗi ngày phải sản xuất $50$ sản phầm. Khi thực hiện tổ đã sản xuất được $57$ sản phẩm một ngày. Do đó hoàn thành trước kế hoạch $1$ ngày và còn vượt mức $13$ sản phẩm. Hỏi theo kế hoạch tổ phải sản xuất bao nhiêu sản phẩm?
Một công việc được giao cho hai người. Người thứ nhất có thể làm xong công việc một mình trong 24 giờ. Lúc đầu, người thứ nhất làm một mình và sau \(\dfrac{{26}}{3}\) giờ người thứ hai cùng làm. Hai người làm chung trong \(\dfrac{{22}}{3}\) giờ thì hoàn thành công việc. Hỏi nếu làm một mình thì người thứ hai cần bao lâu để hoàn thành công việc.
Một đội máy cày dự định cày $40$ ha ruộng $1$ ngày. Do sự cố gắng, đội đã cày được $52$ ha mỗi ngày. Vì vậy, chẳng những đội đã hoàn thành sớm hơn $2$ ngày mà còn cày vượt mức được $4$ ha nữa. Tính diện tích ruộng đội phải cày theo dự định.
Cho phương trình $\left( 1 \right):$ \(x\left( {{x^2} - 4x + 5} \right) = 0\) và phương trình \(\left( 2 \right):\) \(\left( {{x^2} - 1} \right)\left( {{x^2} + 4x + 5} \right) = 0\).
Chọn khẳng định đúng.
Nghiệm của phương trình \(\dfrac{{x + a}}{{b + c}} + \dfrac{{x + b}}{{a + c}} + \dfrac{{x + c}}{{a + b}} = - 3\) là