I. Tiên đề Euclid về đường thẳng song song
Qua một điểm nằm ngoài một đường thẳng, chỉ có một đường thẳng song song với đường thẳng đó.
Chú ý: Nếu một đường thẳng cắt 1 trong 2 đường thẳng song song thì nó cũng cắt đường thẳng còn lại.
II. Tính chất 2 đường thẳng song song
Nếu hai đường thẳng cắt một đường thẳng thứ ba và trong các góc tạo thành có một cặp góc so le trong bằng nhau thì:
+ Hai góc so le trong còn lại bằng nhau
+ Hai góc đồng vị bằng nhau
+ Hai góc trong cùng phía bù nhau
Ví dụ: \({\widehat A_1} = {\widehat B_1} \Rightarrow \left\{ \begin{array}{l}{\widehat A_2} = {\widehat B_2}\\{\widehat A_3} = {\widehat B_1}\\{\widehat A_2} + {\widehat B_1} = {180^0}\end{array} \right.\)
Chú ý:
+ Một đường thẳng vuông góc với một trong hai đường thẳng song song thì nó cũng vuông góc với đường thẳng kia.
Nếu c ⊥ a, a // b thì c ⊥ b
+ Hai đường thẳng phân biệt cùng song song với một đường thẳng thứ ba thì chúng song song với nhau.
Nếu \(a\parallel b;b\parallel c\) thì \(a\parallel c\).