Nghiệm của đa thức một biến

Định nghĩa nghiệm đa thức một biến và các dạng toán về nghiệm đa thức một biến

1. Các kiến thức cần nhớ

Định nghĩa nghiệm đa thức một biến:

Nếu tại \(x = a,\) đa thức $P(x)$ có giá trị bằng $0$ thì ta nói $a$ (hoặc $x = a$) là một nghiệm của đa thức đó.

Ví dụ: Tìm nghiệm của đa thức \(P(y) = 2y + 6\)

Giải

Từ \(2y + 6 = 0 \)\(\Rightarrow 2y =  - 6 \Rightarrow y =  - \dfrac{6}{2} =  - 3\)

Vậy nghiệm của đa thức \(P(y)\) là $– 3.$

2. Các dạng toán thường gặp

Dạng 1: Kiểm tra xem x=a có là nghiệm của đa thức P(x) hay không?

Phương pháp:

Ta tính \(P\left( a \right)\), nếu \(P\left( a \right) = 0\) thì \(x = a\) là nghiệm của đa thức \(P\left( x \right).\)

Dạng 2: Tìm nghiệm của đa thức

Phương pháp:

Để tìm nghiệm của đa thức \(P\left( x \right)\), ta tìm giá trị của \(x\) sao cho \(P\left( x \right) = 0.\)

Dạng 3: Chứng minh đa thức không có nghiệm

Phương pháp:

Để chứng minh đa thức \(P\left( x \right)\) không có nghiệm, ta chứng minh \(P\left( x \right)\) nhận giá trị khác \(0\) tại mọi giá trị của \(x.\)