Hai đường thẳng song song. Tiên đề Ơ-clit về hai đường thẳng song song

Định nghĩa, tính chất, dấu hiệu nhận biết hai đường thẳng song song. Tiên đề Ơ-clit về hai đường thẳng song song. Phương pháp giải các dạng toán về hai đường thẳng song song

I. Các kiến thức cần nhớ

1. Định nghĩa hai đường thẳng song song

Hai đường thẳng song song (trong mặt phẳng) là hai đường thẳng không có điểm chung.

2. Dấu hiệu nhận biết hai đường thẳng song song

+ Nếu hai đường thẳng cắt một đường thẳng thứ ba tạo thành một cặp góc so le trong bằng nhau thì hai đường thẳng song song.

+ Nếu hai đường thẳng cắt một đường thẳng thứ ba tạo thành một cặp góc đồng vị bằng nhau thì hai đường thẳng song song.

+ Nếu hai đường thẳng cắt một đường thẳng thứ ba tạo thành một cặp góc trong cùng phía bù nhau thì hai đường thẳng song song.

Ngoài ra ta còn có dấu hiệu: Nếu hai đường thẳng cắt một đường thẳng thứ ba tạo thành một cặp góc so le ngoài bằng nhau thì hai đường thẳng song song.

Ví dụ:

Hai đường thẳng song song. Tiên đề Ơ-clit về hai đường thẳng song song - ảnh 1

\(\begin{array}{l}{\widehat A_1} = {\widehat B_1} \Rightarrow a//b\\{\widehat A_3} = {\widehat B_1} \Rightarrow a//b\\{\widehat A_2} + {\widehat B_1} = {180^0} \Rightarrow a//b\end{array}\)

3. Tiên đề Ơ-clít về hai đường thẳng song song

Qua một điểm nằm ngoài một đường thẳng, chỉ có một đường thẳng song song song với đường thẳng đó.

4. Tính chất hai đường thẳng song song

Nếu hai đường thẳng song song bị cắt bởi một đường thẳng thứ ba thì:

+ Hai góc so le trong còn lại bằng nhau

+ Hai góc đồng vị bằng nhau

+ Hai góc trong cùng phía bù nhau

Ví dụ:

Hai đường thẳng song song. Tiên đề Ơ-clit về hai đường thẳng song song - ảnh 2

Nếu $a//b$ thì \(\left\{ \begin{array}{l}{\widehat A_1} = {\widehat B_1}\\{\widehat A_3} = {\widehat B_1}\\{\widehat A_2} + {\widehat B_1} = {180^0}\end{array} \right.\)

II. Các dạng toán thường gặp

Dạng 1: Nhận biết và chứng minh hai đường thẳng song song

Phương pháp:

Xét cặp góc so le trong, cắp góc đồng vị hoặc cặp góc trong cùng phía.

Rồi sử dụng dấu hiệu nhận biết hai đường thẳng song song.

Dạng 2: Tính số đo góc tạo bởi đường thẳng cắt hai đường thẳng song song

Phương pháp:

Sử dụng tính chất: Nếu hai đường thẳng song song bị cắt bởi một đường thẳng thứ ba thì:

+ Hai góc so le trong còn lại bằng nhau

+ Hai góc đồng vị bằng nhau

+ Hai góc trong cùng phía bù nhau

Dạng 3: Xác định các góc bằng nhau hoặc bù nhau dựa vào tính chất hai đường thẳng song song

Phương pháp:

Bước 1: Chứng minh hai đường thẳng song song (nếu chưa có)

Bước 2: Sử dụng tính chất:

Nếu hai đường thẳng song song bị cắt bởi một đường thẳng thứ ba thì:

+ Hai góc so le trong còn lại bằng nhau

+ Hai góc đồng vị bằng nhau

+ Hai góc trong cùng phía bù nhau

Câu hỏi trong bài