Nghiệm của hệ phương trình $\left\{ \begin{array}{l}3\left( {y - 5} \right) + 2\left( {x - 3} \right) = 0\\7\left( {x - 4} \right) + 3\left( {x + y - 1} \right) - 14 = 0\end{array} \right.$là $\left( {x;y} \right)$.
Tính ${x^2} + {y^2}$.
Trả lời bởi giáo viên
Ta có $\left\{ \begin{array}{l}3\left( {y - 5} \right) + 2\left( {x - 3} \right) = 0\\7\left( {x - 4} \right) + 3\left( {x + y - 1} \right) - 14 = 0\end{array} \right.$$ \Leftrightarrow \left\{ \begin{array}{l}3y - 15 + 2x - 6 = 0\\7x - 28 + 3x + 3y - 3 - 14 = 0\end{array} \right.$$ \Leftrightarrow \left\{ \begin{array}{l}2x + 3y = 21\\10x + 3y = 45\end{array} \right.$
$ \Leftrightarrow \left\{ \begin{array}{l}3y = 21 - 2x\\10x + 21 - 2x = 45\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3y = 21 - 2x\\8x = 24\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 3\\3y = 15\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 3\\y = 5\end{array} \right.$
Vậy hệ phương trình có nghiệm duy nhất $\left( {x;y} \right) = \left( {3;5} \right)$
$ \Rightarrow {x^2} + {y^2} = {3^2} + {5^2} = 34$
Hướng dẫn giải:
Đưa hệ phương trình về hệ phương trình bậc nhất hai ẩn rồi giải bằng phương pháp thế