Câu hỏi:
2 năm trước

Cho hệ phương trình $\left\{ \begin{array}{l}\dfrac{2}{{2x + y}} + \dfrac{5}{{x + 2y}} = \dfrac{5}{6}\\\dfrac{3}{{2x + y}} - \dfrac{4}{{x + 2y}} =  - \dfrac{3}{5}\end{array} \right.$.

Nếu đặt $\dfrac{1}{{2x + y}} = a;\dfrac{1}{{x + 2y}} = b$ ta được hệ phương trình mới là:

Trả lời bởi giáo viên

Đáp án đúng: a

Ta có $\left\{ \begin{array}{l}\dfrac{2}{{2x + y}} + \dfrac{5}{{x + 2y}} = \dfrac{5}{6}\\\dfrac{3}{{2x + y}} - \dfrac{4}{{x + 2y}} =  - \dfrac{3}{5}\end{array} \right.$$ \Leftrightarrow \left\{ \begin{array}{l}2.\dfrac{1}{{2x + y}} + 5.\dfrac{1}{{x + 2y}} = \dfrac{5}{6}\\3.\dfrac{1}{{2x + y}} - 4.\dfrac{1}{{x + 2y}} =  - \dfrac{3}{5}\end{array} \right.$

Đặt $\dfrac{1}{{2x + y}} = a;\dfrac{1}{{x + 2y}} = b$ ta được hệ phương trình $\left\{ \begin{array}{l}2a + 5b = \dfrac{5}{6}\\3a - 4b =  - \dfrac{3}{5}\end{array} \right.$

Câu hỏi khác