Cho hai hàm số $y = f\left( x \right),\,\,y = g\left( x \right)$ là các hàm liên tục trên đoạn $\left[ {0;2} \right],$ có $\int\limits_0^1 {f\left( x \right){\rm{d}}x} = 4,\,\,\int\limits_0^2 {g\left( x \right){\rm{d}}x} = - \,2$ và $\int\limits_1^2 {g\left( t \right){\rm{d}}t} = 1.$ Tính $I = \int\limits_0^1 {\left[ {2f\left( x \right) - g\left( x \right)} \right]{\rm{d}}x} .$