Cho hai hàm số $y = f\left( x \right),\,\,y = g\left( x \right)$ là các hàm liên tục trên đoạn $\left[ {0;2} \right],$ có $\int\limits_0^1 {f\left( x \right){\rm{d}}x} = 4,\,\,\int\limits_0^2 {g\left( x \right){\rm{d}}x} = - \,2$ và $\int\limits_1^2 {g\left( t \right){\rm{d}}t} = 1.$ Tính $I = \int\limits_0^1 {\left[ {2f\left( x \right) - g\left( x \right)} \right]{\rm{d}}x} .$
Trả lời bởi giáo viên
Ta có $\int\limits_0^2 {g\left( x \right){\rm{d}}x} = \int\limits_0^1 {g\left( x \right){\rm{d}}x} + \int\limits_1^2 {g\left( x \right){\rm{d}}x} = \int\limits_0^1 {g\left( x \right){\rm{d}}x} + \int\limits_1^2 {g\left( t \right){\rm{d}}t} $
Suy ra $\int\limits_0^1 {g\left( x \right){\rm{d}}x} = \int\limits_0^2 {g\left( x \right){\rm{d}}x} - \int\limits_1^2 {g\left( t \right){\rm{d}}t} = - \,2 - 1 = - \,3.$
Vậy $I = 2\,\int\limits_0^1 {f\left( x \right){\rm{d}}x} - \int\limits_0^1 {g\left( x \right){\rm{d}}x} = 2.4 - \left( { - \,3} \right) = 11.$
Hướng dẫn giải:
Sử dụng các công thức \(\int\limits_a^b {f\left( x \right)dx} + \int\limits_b^c {f\left( x \right)dx} = \int\limits_a^c {f\left( x \right)dx} ;\,\,\int\limits_a^b {f\left( x \right)dx} = - \int\limits_b^a {f\left( x \right)dx} ;\,\,\int\limits_a^b {cf\left( x \right)dx} = c\int\limits_a^b {f\left( x \right)dx} .\)