Đề thi cuối học kì 2 Toán 10 Cánh diều năm 2022 - 2023 có đáp án (Đề 7)


ĐỀ KIỂM TRA CUỐI HỌC KÌ 2 NĂM HỌC 2022 – 2023

MÔN: TOÁN LỚP 10

BỘ SÁCH: CÁNH DIỀU

A. Ma trận đề thi

Câu hỏi trắc nghiệm: 35 câu (70%)Câu hỏi tự luận : 3 câu (30%)

TT

Nội dung kiến thức

Đơn vị kiến thức

Mức độ nhận thức

Tổng

% tổng

điểm

Nhận biết

Thông hiểu

Vận dụng

Vận dụng cao

Số CH

Thời gian (phút)

Số CH

Thời gian (phút)

Số CH

Thời gian (phút)

Số CH

Thời gian (phút)

Số CH

Thời gian (phút)

TN

TL

1

Đại số tổ hợp

1.1. Quy tắc cộng. Quy tắc nhân. Sơ đồ hình cây

1

1

1

6

10

1.2. Hoán vị, chỉnh hợp, tổ hợp

1

1,5

1

2

2

1.3. Nhị thức Newton

1

1,5

1

2

Một số yếu tố thống kê và xác suất

2.1. Số gần đúng. Sai số

1

2

1

47

45

2.2. Các số đặc trưng đo xu thế trung tâm

1

1,5

2

5

3

2.3. Các số đặc trưng đo mức độ phân tán

1

1,5

1

3

1

12

2

1

2.4. Xác suất của biến cố

2

2

2

5

1

15

4

1

3

Phương pháp tọa độ trong mặt phẳng

3.1. Tọa độ của vectơ

2

3

1

2

3

37

45

3.2. Biểu thức tọa độ của các phép toán

1

1,5

1

3.3. Phương trình đường thẳng

2

2

1

3

3

3.4. Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng

1

1

1

3

2

3.5. Phương trình đường tròn

1

1,5

2

5

1

12

3

1

3.6. Ba đường conic

1

1

1

2

2

Tổng

16

21

12

30

2

24

1

15

28

3

90

100

Tỉ lệ (%)

40

30

20

10

70

30

100

Tỉ lệ chung (%)

70

30

100

100

Lưu ý:

- Các câu hỏi ở cấp độ nhận biết, thông hiểu, vận dụng là các câu hỏi trắc nghiệm khách quan 4 lựa chọn, trong đó có duy nhất 1 lựa chọn đúng.

- Các câu hỏi ở cấp độ vận dụng và vận dụng cao tô màu xanh lá là các câu hỏi tự luận.

- Số điểm tính cho 1 câu trắc nghiệm là 0,2 điểm/câu; số điểm của câu tự luận được quy định trong hướng dẫn chấm nhưng phải tương ứng với tỉ lệ điểm được quy định trong ma trận.

- Trong nội dung kiến thức: Câu 1* là câu hỏi tự luận chiếm 0,5 điểm.

BẢNG ĐẶC TẢ KĨ THUẬT ĐỀ KIỂM TRA CUỐI HỌC KÌ 2

MÔN: TOÁN 10 – THỜI GIAN LÀM BÀI: 90 phút

TT

Nội dung kiến thức

Đơn vị kiến thức

Mức độ kiến thức, kĩ năng cần kiểm tra, đánh giá

Số câu hỏi theo mức độ nhận thức

Nhận biết

Thông hiểu

Vận dụng

Vận dụng cao

1

Đại số tổ hợp

1.1. Quy tắc cộng. Quy tắc nhân. Sơ đồ hình cây

Nhận biết:

- Nắm được và phân biệt được quy tắc cộng và quy tắc nhân.

- Nắm được và đọc được sơ đồ cây.

Thông hiểu:

- Đếm được các kết quả có thể xảy ra theo quy tắc cộng và quy tắc nhân.

- Biết cách dựng sơ đồ cây cho bài toán.

1

1.2. Hoán vị. Chỉnh hợp. Tổ hợp

Nhận biết:

- Nắm được định nghĩa hoán vị, chỉnh hợp, tổ hợp.

- Nắm được các công thức tính hoán vị, chỉnh hợp, tổ hợp.
Thông hiểu:

- Tính được các hoán vị, chỉnh hợp, tổ hợp.

1

1

1.3. Nhị thức Newtơn

Nhận biết:

- Nhận biết được các số hạng, hệ số của các số hạng trong khai triển nhị thức Newton.

Thông hiểu:

- Khai triển được nhị thức Newton với số mũ thấp ( hoặc ) bằng cách vận dụng tổ hợp.

Vận dụng

- Áp dụng được nhị thức Newtơn tìm được các số hạng trong khai triển, giải quyết các bài toán tính tổng, ...

1

2.1. Số gần đúng. Sai số

Nhận biết:

- Hiểu được khái niệm số gần đúng, sai số tuyệt đối.

Thông hiểu:

- Xác định được số gần đúng của một số với độ chính xác cho trước.

- Xác định được sai số tương đối của số gần đúng.

- Xác định được số quy tròn của số gần đúng với độ chính xác cho trước.

2.2. Số đặc trưng đo xu thế trung tâm

Nhận biết:

- Nắm được các định nghĩa, đặc điểm, ý nghĩa của các số đặc trưng đo xu thế trung tâm.

Thông hiểu:

- Tính được các số đặc trưng đo xu thế trung tâm cho mẫu số liệu không ghép nhóm: Số trung bình cộng, trung vị, tứ phân vị, mốt.

2.3. Số đặc trưng đo độ phân tán

Nhận biết:

- Giải thích được ý nghĩa và vai trò của các số đặc trưng nói trên của mẫu số liệu trong thực tiễn.

- Chỉ ra được những kết luận nhờ ý nghĩa của số đặc trưng nói trên của mẫu số liệu trong trường hợp đơn giản.

- Nhận biết được mối liên hệ giữa thống kê với những kiến thức của các môn học trong chương trình lớp 10 và trong thực tiễn.

Thông hiểu:

- Tính được khoảng biến thiên, khoảng tứ phân vị, phương sai, độ lệch chuẩn.

Vận dụng:

- Vận dụng được các số đo độ phân tán của số liệu để giải quyết các bài toán liên hệ với thực tiễn.

2.4. Xác suất của biến cố

Nhận biết:

- Mô tả các tính chất cơ bản của xác suất.

- Nắm được một số thí nghiệm lập bằng cách sử dụng sơ đồ cây.

Thông hiểu

- Tính xác suất của biến cố trong một số bài toán đơn giản bằng phương pháp tổ hợp.

- Tính xác suất trong một số bài toán đơn giản bằng cách sử dụng sơ đồ cây.

Vận dụng:

- Tính xác suất của biến cố đối.

Phương pháp tọa độ trong mặt phẳng

2.1. Tọa độ vectơ

Nhận biết:

- Nhận biết được tọa độ của vectơ đối với một hệ trục tọa độ.

Thông hiểu:

- Tìm được tọa độ của một vectơ, độ dài của một vectơ khi biết tọa độ hai đầu mút của nó.

- Sử dụng được biểu thức tọa độ của các phép toán vectơ trong tính toán.

Vận dụng:

- Vận dụng được phương pháp tọa độ vào bài toán giải tam giác.

- Vận dụng được kiến thức về tọa độ của vec tơ để giải một số bài toán liên quan đến thực tiễn.

2.2. Biểu thức tọa độ vectơ

2.3. Phương trình đường thẳng

Nhận biết:

- Vectơ pháp tuyến hoặc vectơ chỉ phương của đường thẳng;

- Điểm thuộc (không thuộc) đường thẳng;

- Nhận dạng PTTS của đường thẳng khi biết đường thẳng đó đi qua 1 điểm và nhận 1 vectơ chỉ phương.

Thông hiểu:

- Xác định được PTTQ của đường thẳng khi biết đường thẳng đó đi qua 1 điểm và nhận 1 vectơ pháp tuyến;

- Viết phương trình đường thẳng đi qua 2 điểm cho trước;

- Chuyển dạng phương trình đường thẳng (từ dạng tham số sang dạng tổng quát, hoặc từ dạng tổng quát về dạng tham số).

Vận dụng:

- Liên hệ được các kiến thức tổng hợp để viết phương trình đường thẳng ở dạng phức tạp;

- Vận dụng kiến thức về phương trình đường thẳng để giải một số bài toán thực tiễn có liên quan.

2.4. Vị trí tương đối của 2 đường thẳng. Khoảng cách từ một điểm đến một đường thẳng

Nhận biết:

- Nhận biết vị trí tương đối giữa hai đường thẳng;

- Nhận biết công thức tính khoảng cách từ một điểm đến một đường thẳng;

- Nhận biết công thức tính góc giữa hai đường thẳng.

Thông hiểu:

- Tính khoảng cách từ một điểm đến một đường thẳng;

- Tính góc giữa hai đường thẳng;

- Xác định vị trí tương đối giữa hai đường thẳng;

- Tìm giao điểm của 2 đường thẳng;

- Tìm điều kiện m để 2 đường thẳng song song hoặc vuông góc (trong trường hợp đơn giản).

2.5. Phương trình đường tròn

Nhận biết:

- Nhận biết phương trình đường tròn;

- Xác định được tâm và bán kính đường tròn biết phương trình của nó;

- Xác định được phương trình đường tròn biết tâm và bán kính cho trước.

Thông hiểu:

- Xác định được phương trình đường tròn khi biết tâm và điểm đi qua;

- Xác định được phương trình đường tròn khi biết đường kính AB (A, B có tọa độ cho trước);

- Xác định được phương trình đường tròn khi biết tâm và tiếp xúc với đường thẳng cho trước;

- Phương trình tiếp tuyến của đường tròn tại điểm thuộc đường tròn.

Vận dụng cao:

- Tổng hợp các kiến thức về phương trình đường tròn.

2.6. Ba đường cônic

Nhận biết:

- Nhận biết ba đường conic bằng hình học.

- Nhận biết phương trình chính tắc của ba đường conic trong mặt phẳng tọa độ.

Thông hiểu:

- Viết phương trình chính tắc của ba đường conic.

- Xác định được các yếu tố cơ bản của ba đường conic.

Vận dụng:

- Giải quyết một số vấn đề thực tiễn gắn với ba đường conic.

18

15

4

2

SỞ GIÁO DỤC VÀ ĐÀO TẠO…

TRƯỜNG…

KIỂM TRA HỌC KÌ II

NĂM HỌC: 2022 – 2023

Môn: TOÁN – Lớp 10

Thời gian: 90 phút (không kể thời gian giao đề)

I. PHẦN TRẮC NGHIỆM (7 ĐIỂM)

Câu 1. Cho số gần đúng với độ chính xác . Số quy tròn của số

A. 1,257; B. 1,26; C. 1,256; D. 1,3.

Câu 2. Trung vị của mẫu số liệu: 4; 5; 5; 6; 7; 7; 8; 9; 9 là

A. 6; B. 7; C. 8; D. 9.

Câu 3. Khảo sát điểm thi đầu vào môn Tiếng Anh (thang điểm 100) của một số sinh viên tại một trường đại học cho kết quả như sau:

90 50 80 80 50 56 85 30 50 40 35 80 95

60

Khoảng biến thiên của mẫu số liệu trên là

A. 65; B. 60; C. 45; D. 40.

Câu 4. Có 100 học sinh tham dự kì thi học sinh giỏi môn Toán (thang điểm 20). Kết quả như sau:

Điểm

9

10

11

12

13

14

15

16

17

18

19

Tần số

1

1

3

5

8

13

19

24

14

10

2

Giá trị mốt của mẫu số liệu trên là

A. 1; B. 24; C. 16; D. 10.

Câu 5. Một mẫu số liệu có độ lệch chuẩn bằng 2,5. Phương sai của mẫu số liệu đó là

A. 2,5; B. 6,25; C. 1,58; D. 5.

Câu 6. Khoảng tứ phân vị

A. ; B. ; C. ; D. .

Câu 7. Góc giữa hai đường thẳng có thể là góc

A. nhọn; B. vuông; C. A và B đúng; D. A và C sai.

Câu 8. Trong mặt phẳng tọa độ , cho hai điểm . Tọa độ trung điểm của đoạn thẳng

A. ; B. ; C. ; D. .

Câu 9. Tọa độ giao điểm của hai đường thẳng

A. ; B. ; C. ; D. .

Câu 10. Phương trình đường thẳng đi qua điểm nhận vectơ là vectơ chỉ phương là

A. ; B. ; C. ; D. .

Câu 11. Trong mặt phẳng tọa độ , cho đường thẳng . Phương trình tổng quát của đường thẳng

A. ; B. ;

C. ; D. .

Câu 12. Phương trình tổng quát của đường thẳng đi qua hai điểm

A. ; B. ;

C. ; D. .

Câu 13. Trong mặt phẳng , cho đường thẳng . Tọa độ điểm thuộc đường thẳng sao cho tam giác vuông tại

A. ; B. ; C. ; D. .

Câu 14. Trong hệ trục tọa độ , vectơ nào là một vectơ pháp tuyến của đường thẳng ?

A. ; B. ; C. ; D. .

Câu 15. Đường tròn tâm và đi qua điểm có phương trình là:

A. ; B. ;

C. ; D. .

Câu 16. Phương trình nào sau đây là phương trình của đường tròn tâm , bán kính bằng ?

A. ; B. ;

C. ; D. .

Câu 17. Cho đường tròn có phương trình . Đường tròn còn được viết dưới dạng nào trong các dạng dưới đây

A. ; B. ;

C. ; D. .

Câu 18. Trong hệ trục tọa độ , cho điểm và đường thẳng . Đường tròn tâm và tiếp xúc với đường thẳng có phương trình

A. ; B. ;

C. ; D. .

Câu 19. Trong các phương trình sau phương trình nào biểu diễn một Hypebol?

A. ; B. ; C. ; D..

Câu 20. Cho Elip . Chu vi hình chữ nhật có chiều dài bằng trục lớn của Elip và chiều rộng bằng trục nhỏ của Elip là

A. ; B. ; C. ; D. .

Câu 21. Một người vào cửa hàng ăn, người đó chọn thực đơn gồm một món chính trong năm món chính, một loại quả tráng miệng trong năm loại quả tráng miệng và một loại nước uống trong ba loại nước uống. Số cách chọn thực đơn là

A. ; B. ; C. ; D. .

Câu 22. Có bao nhiêu cách sắp xếp học sinh thành một hàng dọc?

A. ; B. ; C. ; D. .

Câu 23. Cho tập hợp . Số hoán vị của ba phần tử của

A. ; B. ; C. ; D. .

Câu 24. Hệ số của đơn thức trong khai triển nhị thức .

A. ; B. ; C. ; D. .

Câu 25. Gọi là xác suất của biến cố . Khẳng định nào sau đây sai?

A. ; B. ;

C. ; D. .

Câu 26. Gieo ngẫu nhiên đồng tiền thì không gian mẫu của phép thử có bao nhiêu phần tử?

A. ; B. ; C. ; D. .

Câu 27. Gieo hai con súc sắc. Xác suất để tổng số chấm trên hai mặt bằng

A. ; B. ; C. ; D. .

Câu 28. Trên giá sách có quyển sách Toán, quyển sách Vật lý, quyển sách Hoá học. Lấy ngẫu nhiên quyển sách trên kệ sách ấy. Tính xác suất để quyển được lấy ra đều là sách Toán.

A. ; B. ; C. ; D. .

II. PHẦN TỰ LUẬN (3 điểm)Bài 1. (1 điểm)

a) Từ các số có thể lập được bao nhiêu số tự nhiên có chữ số khác nhau và tổng các chữ số ở hàng chục, hàng trăm, hàng nghìn bằng .

b) Cho là số nguyên dương thỏa mãn . Tìm số hạng không chứa trong khai triển

Bài 2. (1 điểm)

a) Trong mặt phẳng tọa độ , cho đường tròn có tâm và đi qua điểm . Viết phương trình đường tròn .

b) Trong mặt phẳng tọa độ , cho đường thẳng và điểm . Gọi là đường tròn tâm và cắt đường thẳng tại hai điểm sao cho tam giác có diện tích bằng . Viết phương trình đường tròn .

Bài 3. (1 điểm) Cho một đa giác đều đỉnh (với là số lẻ). Chọn ngẫu nhiên đỉnh của đa giác đều đó. Gọi là xác suất sao cho đỉnh đó tạo thành một tam giác tù. Biết . Tìm .

HƯỚNG DẪN GIẢII. PHẦN TRẮC NGHIỆM (7 ĐIỂM)BẢNG ĐÁP ÁN

1. B

2. B

3. A

4. C

5. B

6. C

7. C

8. D

9. A

10. C

11. B

12. B

13. B

14. A

15. D

16. D

17. D

18. C

19. A

20. C

21. B

22. B

23. C

24. D

25. C

26. A

27. C

28. B

HƯỚNG DẪN CHI TIẾT

Câu 1. Hướng dẫn giảiĐáp án đúng là: B

Vì hàng lớn nhất của độ chính xác là hàng phần nghìn, nên ta quy tròn đến hàng phần trăm.

Vậy số quy tròn của số là 1,26.

Câu 2. Hướng dẫn giảiĐáp án đúng là: B

Mẫu số liệu gồm 9 số liệu được sắp xếp theo thứ tự không giảm.

Do đó, trung vị của mẫu số liệu là số ở vị trí thứ 5 nên .

Câu 3. Hướng dẫn giảiĐáp án đúng là: A

Giá trị lớn nhất của mẫu số liệu là 95, giá trị nhỏ nhất của mẫu số liệu là 30.

Vậy khoảng biến thiên của mẫu số liệu là .

Câu 4. Hướng dẫn giảiĐáp án đúng là: C

Từ bảng thống kê ta thấy giá trị 16 có tần số lớn nhất (24) nên mốt của mẫu số liệu là 16.

Câu 5. Hướng dẫn giảiĐáp án đúng là: B

Phương sai của mẫu số liệu đã cho là .

Câu 6. Hướng dẫn giảiĐáp án đúng là: C

Khoảng tứ phân vị .

Câu 7. Hướng dẫn giảiĐáp án đúng là: C

Góc giữa hai đường thẳng là số đo của góc không tù. Do đó A và B đều đúng.

Câu 8.

Hướng dẫn giải Đáp án đúng là: D

Tọa độ trung điểm của đoạn thẳng thỏa mãn:

.

Câu 9. Hướng dẫn giảiĐáp án đúng là: A

Tọa độ giao điểm của đường thẳng và đường thẳng là nghiệm của hệ phương trình .

Câu 10. Hướng dẫn giảiĐáp án đúng là: C

Phương trình tham số của đường thẳng đi qua điểm nhận vectơ là vectơ chỉ phương có dạng: .

Câu 11. Hướng dẫn giảiĐáp án đúng là: B

Ta có đường thẳng đi qua điểm và có một vectơ chỉ phương là suy ra đường thẳng có một vectơ pháp tuyến là . Vậy phương trình tổng quát của đường thẳng là: .

Câu 12.

Hướng dẫn giải Đáp án đúng là: B

Ta có:

Khi đó đường thẳng nhận làm vectơ pháp tuyến có phương trình là:

.

Câu 13. Hướng dẫn giảiĐáp án đúng là: B

Ta có:

Gọi là đường thẳng vuông góc với đường thẳng tại .

Khi đó phương trình đường thẳng là:

.

Điểm là giao điểm của nên toạ độ điểm là nghiệm của hệ phương trình:

.

Câu 14. Hướng dẫn giảiĐáp án đúng là: A

Một vectơ chỉ phương của đường thẳng là suy ra một vectơ pháp tuyến của là .

Câu 15. Hướng dẫn giảiĐáp án đúng là: D

Đường tròn tâm và đi qua điểm có bán kính

Ta có suy ra

Vậy đường tròn có phương trình là: .

Câu 16. Hướng dẫn giảiĐáp án đúng là: D

Phương trình đường tròn tâm và bán kính là: .

Câu 17. Hướng dẫn giảiĐáp án đúng là: D

Ta có:

.

Câu 18. Hướng dẫn giảiĐáp án đúng là: C

Đường tròn tâm và tiếp xúc với đường thẳng có bán kính

Vậy đường tròn có phương trình là: .

Câu 19. Hướng dẫn giảiĐáp án đúng là: A

Phương trình chính tắc của Hypebol có dạng: .

Vậy đáp án đúng là A.

Câu 20. Hướng dẫn giảiĐáp án đúng là: C

Xet .

Khi đó:

- Độ dài trục lớn là: ;

- Độ dài trục nhỏ là: .

Do đó chu vi hình chữ nhật cần tìm là: .

Câu 21.

Hướng dẫn giảiĐáp án đúng là: B

Việc chọn thực đơn gồm ba công đoạn:

Công đoạn 1: Chọn một món chính, có cách chọn.

Công đoạn 2: Chọn một loại quả tráng miệng, có cách chọn.

Công đoạn 3: chọn một loại nước uống, có cách chọn.

Theo quy tắc nhân, ta có tất cả cách chọn thực đơn.

Vậy ta chọn phương án B.

Câu 22. Hướng dẫn giảiĐáp án đúng là: B

Mỗi cách sắp xếp học sinh thành một hàng dọc là một hoán vị của phần tử. Vậy có cách xếp.

Câu 23.

Hướng dẫn giảiĐáp án đúng là: C

Số hoán vị của ba phần tử của tập là: .

Vậy ta chọn phương án C.

Câu 24. Hướng dẫn giảiĐáp án đúng là: D

Ta có

Suy ra hệ số của trong khai triển trên là: .

Câu 25. Hướng dẫn giảiĐáp án đúng là: C

Với mỗi biến cố thì

là biến cố đối của biến cố , khi đó:

hay .

.

Vậy đáp án B đúng.

Câu 26. Hướng dẫn giảiĐáp án đúng là: A

Gieo mỗi đồng xu có trường hợp có thể xảy ra

Vậy số phần tử của không gian mẫu

Câu 27. Hướng dẫn giảiĐáp án đúng là: C

Số phần tử không gian mẫu:

Biến cố tổng hai mặt bằng là:

nên .

Suy ra .

Câu 28. Hướng dẫn giảiĐáp án đúng là: B

Số phần tử của không gian mẫu là: .

Goi là biến cố “lấy được quyển sách Toán”

Số phần tử của biến cố là:

Xác suất biến cố là: .

II. PHẦN TỰ LUẬN (3 điểm)Bài 1. (1 điểm) Hướng dẫn giải

a) Gọi số cần tìm có dạng là số thỏa yêu cầu bài toán thì .

Có hai bộ số có tổng bằng trong các số là:

Nếu thì cách chọn và cách chọn suy ra có số thỏa mãn yêu cầu.

Nếu tương tự ta cũng có số thỏa yêu cầu.

Vậy có số thỏa yêu cầu.

b) Điều kiện:

Khi đó,

Suy hệ số của số hạng không chứa trong khai triển .

Bài 2. (1 điểm) Hướng dẫn giải

a) Ta có: .

Suy ra bán kính đường tròn .

Khi đó phương trình đường tròn cần tìm là: .

b)

Từ điểm kẻ vuông góc với đường thẳng .

Khi đó là trung điểm của .

Khoảng cách từ điểm đến đường thẳng là: .

Diện tích tam giác bằng nên độ dài cạnh bằng: .

.

Xét tam giác , vuông tại có: .

Khi đó phương trình đường tròn có tâm và bán kính là:

.

Bài 3. (1 điểm) Hướng dẫn giải

Do là số lẻ nên ta đặt .

Số phần tử không gian mẫu là:.

Gọi là biến cố: “ đỉnh được chọn tạo thành tam giác tù”

Giả sử tam giác có góc là góc nhọn và góc

Chọn một đỉnh bất kì làm đỉnh cách

Khi đó còn lại đỉnh, từ điểm được chọn ta chia làm , mỗi bên là đỉnh

Để tạo thành tam giác tù thì đỉnh còn lại phải được chọn từ đỉnh cùng thuộc một phía so với điểm đã chọn do đó có cách chọn

Nhưng với cách tính như vậy số tam giác được lặp lại lần nên

Vậy .

.

Kết hợp với điều kiện thoả mãn bài toán.

Vậy .

C. Hướng dẫn đáp án
Danh mục: Đề thi