Các bài toán về đường thẳng và mặt cầu

Kỳ thi ĐGNL ĐHQG Hồ Chí Minh

Đổi lựa chọn

I. Vị trí tương đối của đường thẳng và mặt cầu

Cho mặt cầu \(\left( S \right)\) tâm \(I\), bán kính \(R\) và đường thẳng \(\Delta \) (đi qua \(M\) và có VTCP \(\overrightarrow u \)). Khi đó:

+) \(\Delta  \cap \left( S \right) = \emptyset  \Leftrightarrow d\left( {I,\Delta } \right) > R\).

+) \(\Delta  \cap \left( S \right) = \left\{ H \right\} \Leftrightarrow d\left( {I,\Delta } \right) = R\).

+) \(\Delta  \cap \left( S \right) = \left\{ {A,B} \right\} \Leftrightarrow d\left( {I,\Delta } \right) < R\).

ở đó \({R^2} = {d^2}\left( {I,\Delta } \right) + \dfrac{{A{B^2}}}{4}\) và \(AB = 2\sqrt {{R^2} - {d^2}\left( {I,\Delta } \right)} \)

II. Dạng 1: Xét vị trí tương đối của đường thẳng và mặt cầu

Phương pháp:

Cách 1: Sử dụng lý thuyết vị trí tương đối của đường thẳng và mặt cầu.

- Bước 1: Tính khoảng cách từ tâm mặt cầu đến đường thẳng và so sánh với \(R\).

- Bước 2: Kết luận dựa vào các vị trí tương đối của đường thẳng và mặt cầu.

Cách 2: Xét phương trình giao điểm của đường thẳng và mặt cầu.

- Nếu phương trình vô nghiệm thì đường thẳng không có điểm chung với mặt cầu.

- Nếu phương trình có nghiệm duy nhất thì đường thẳng tiếp xúc với mặt cầu.

- Nếu phương trình có hai nghiệm phân biệt thì đường thẳng cắt mặt cầu tại hai điểm phân biệt.

III. Dạng 2: Viết phương trình mặt cầu có tâm và tiếp xúc với đường thẳng cho trước

Phương pháp:

- Bước 1: Gọi phương trình mặt cầu ở dạng tổng quát.

- Bước 2: Xét phương trình giao điểm của \(d\) và \(\left( S \right)\), điều kiện để mặt cầu tiếp xúc với đường thẳng là phương trình giao điểm có nghiệm duy nhất.

IV. Dạng 3: Viết phương trình mặt phẳng có mối quan hệ với đường thẳng và mặt cầu

Phương pháp chung:

Xác định điểm đi qua và VTPT của mặt phẳng, từ đó viết phương trình.