Trong không gian Oxyz, cho 3 điểm \(A\left( 6;0;0 \right);\,\,B\left( 0;6;0 \right);\,\,C\left( 0;0;6 \right)\). Hai mặt cầu có phương trình \(\left( {{S}_{1}} \right):\,\,{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-2x-2y+1=0\) và \(\left( {{S}_{2}} \right):\,\,{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-8x+2y+2z+1=0\) cắt nhau theo đường tròn (C). Hỏi có bao nhiêu mặt cầu có tâm thuộc mặt phẳng chứa (C) và tiếp xúc với ba đường thẳng AB, BC, CA?
Trả lời bởi giáo viên
Mặt cầu \(\left( {{S}_{1}} \right)\) có tâm \({{I}_{1}}\left( 1;1;0 \right)\), mặt cầu \(\left( {{S}_{2}} \right)\) có tâm \({{I}_{2}}\left( 4;-1;-1 \right)\).
Dễ thấy điểm \(M\left( 1;1;1 \right)\) thuộc cả hai mặt cầu \(\Rightarrow M\in \left( P \right)\,\,\,\left( 1 \right)\).
Mặt phẳng (P) chứa (C) vuông góc với \({{I}_{1}}{{I}_{2}}\) và đi qua M. Do đó phương trình mặt phẳng (P) là:
\(3\left( x-1 \right)-2\left( y-1 \right)-\left( z-1 \right)=0\Leftrightarrow 3x-2y-z=0\).
Gọi K là tâm của mặt cầu cần tìm ta có \(K\in \left( P \right)\). Gọi A’; B’; C’ lần lượt là hình chiếu của K trên AB, BC, CA ta có \(KA'=KB'=KC'\).
Gọi K’ là hình chiếu của K trên (ABC) ta chứng minh được \(K'A\bot AB;\,\,K'B\bot BC;\,\,K'C\bot CA\) và \(K'A'=K'B'=K'C'\Rightarrow K'\) là tâm đường tròn nội tiếp tam giác ABC. Mà tam giác ABC đều \(\Rightarrow K'\) là trọng tâm của tam giác ABC \(\Rightarrow K'\left( 2;2;2 \right)\).
Phương trình mặt phẳng (ABC): \(\frac{x}{6}+\frac{y}{6}+\frac{z}{6}=1\Leftrightarrow x+y+z=6\).
\(\Rightarrow \) Phương trình đường thẳng đi qua K’ và vuông góc với (ABC) là: \(d:\,\,\frac{x-2}{1}=\frac{y-2}{1}=\frac{z-2}{1}\Rightarrow K\in d\,\,\,\left( 2 \right)\)
Từ (1) và (2) \(\Rightarrow K=\left( P \right)\cap d\Rightarrow K\left( t+2;t+2;t+2 \right)\)
Thay vào phương tình mặt phẳng (P) \(\Rightarrow 3\left( t+2 \right)-2\left( t+2 \right)-\left( t+2 \right)=0\Rightarrow \) Phương trình có vô số nghiệm.
Vậy có vô số điểm K thỏa mãn yêu cầu bài toán.
Hướng dẫn giải:
Viết phương trình mặt phẳng (P) chứa (C) \(\Rightarrow K\in \left( P \right)\).
Gọi K là tâm của mặt cầu cần tìm ta có \(K\in \left( P \right)\). Gọi A’; B’; C’ lần lượt là hình chiếu của K trên AB, BC, CA.
Gọi K’ là hình chiếu của K trên (ABC), chứng minh K’ là trọng tâm tam giác ABC.
Viết phương trình đường thẳng d đi qua K’ và vuông góc với (ABC) \(\Rightarrow K\in d\).
\(\Rightarrow K=\left( P \right)\cap d\Rightarrow \) Tìm tọa độ điểm K.