Câu hỏi:
2 năm trước

Rút gọn biểu thức \(\dfrac{a}{{\sqrt 5  + 1}} + \dfrac{a}{{\sqrt 5  - 2}} - \dfrac{a}{{3 - \sqrt 5 }} - \sqrt 5 a\) ta được

Trả lời bởi giáo viên

Đáp án đúng: b

Ta có \(\dfrac{a}{{\sqrt 5  + 1}} + \dfrac{a}{{\sqrt 5  - 2}} - \dfrac{a}{{3 - \sqrt 5 }} - \sqrt 5 a\)$ = \dfrac{{a\left( {\sqrt 5  - 1} \right)}}{{\left( {\sqrt 5  - 1} \right)\left( {\sqrt 5  + 1} \right)}} + \dfrac{{a\left( {\sqrt 5  + 2} \right)}}{{\left( {\sqrt 5  - 2} \right)\left( {\sqrt 5  + 2} \right)}} - \dfrac{{a\left( {3 + \sqrt 5 } \right)}}{{\left( {3 + \sqrt 5 } \right)\left( {3 - \sqrt 5 } \right)}} - \sqrt 5 a$

$ = \dfrac{{a\left( {\sqrt 5  - 1} \right)}}{4} + \dfrac{{a\left( {\sqrt 5  + 2} \right)}}{1} - \dfrac{{a\left( {3 + \sqrt 5 } \right)}}{4} - \sqrt 5 a$$ = \dfrac{{a\left( {\sqrt 5  - 1} \right) + 4a\left( {2 + \sqrt 5 } \right) - a\left( {3 + \sqrt 5 } \right) - 4\sqrt 5 a}}{4}$

$ = \dfrac{{a\left( {\sqrt 5  - 1 + 8+ 4\sqrt 5  - 3 - \sqrt 5  - 4\sqrt 5 } \right)}}{4} = \dfrac{{4a}}{4} = a$

Hướng dẫn giải:

-Trục căn thức ở mẫu theo công thức

Với các biểu thức $A,B,C$ mà $A \ge 0,A \ne {B^2}$, ta có $\dfrac{C}{{\sqrt A  + B}} = \dfrac{{C\left( {\sqrt A  - B} \right)}}{{A - {B^2}}};\dfrac{C}{{\sqrt A  - B}} = \dfrac{{C\left( {\sqrt A  + B} \right)}}{{A - {B^2}}}$

 -Quy đồng mẫu số các phân số rồi rút gọn

Câu hỏi khác