Hàm số nào sau đây nghịch biến trên khoảng \(\left( { - 1; + \infty } \right)?\)
Trả lời bởi giáo viên
Xét đáp án D, ta có \(y = - \sqrt 2 {\left( {x + 1} \right)^2} = - \sqrt 2 {x^2} - 2\sqrt 2 x - \sqrt 2 \) nên \( - \dfrac{b}{{2a}} = - 1\) và có \(a < 0\) nên hàm số đồng biến trên khoảng \(\left( { - \infty ; - 1} \right)\) và nghịch biến trên khoảng \(\left( { - 1; + \infty } \right)\).
Hướng dẫn giải:
- Nếu \(a > 0\) thì hàm số đồng biến trên \(\left( { - \dfrac{b}{{2a}}; + \infty } \right)\), nghịch biến trên \(\left( { - \infty ; - \dfrac{b}{{2a}}} \right)\), đạt được GTNN trên \(R\) tại \(x = - \dfrac{b}{{2a}}\).
- Nếu \(a < 0\) thì hàm số nghịch biến trên \(\left( { - \dfrac{b}{{2a}}; + \infty } \right)\), đồng biến trên \(\left( { - \infty ; - \dfrac{b}{{2a}}} \right)\), đạt được GTLN trên \(R\) tại \(x = - \dfrac{b}{{2a}}\).