Câu hỏi:
2 năm trước

Cho \(x\), \(y\) là những số thực thoả mãn \({x^2} - xy + {y^2} = 1\). Gọi \(M\) và \(m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của \(P = \dfrac{{{x^4} + {y^4} + 1}}{{{x^2} + {y^2} + 1}}\). Giá trị của \(A = M + 15m\) là

Trả lời bởi giáo viên

Đáp án đúng: a

Ta có

+) \(1 + xy = {x^2} + {y^2} \ge 2xy \Leftrightarrow xy \le 1\) vì \({\left( {x - y} \right)^2} = {x^2} + {y^2} - 2xy \ge 0\).

+) \({x^2} - xy + {y^2} = 1 \Leftrightarrow {\left( {x + y} \right)^2} - 3xy = 1 \Leftrightarrow {\left( {x + y} \right)^2} = 1 + 3xy \ge 0 \Leftrightarrow xy \ge  - \dfrac{1}{3}\).

Khi đó \(P = \dfrac{{{x^4} + {y^4} + 1}}{{{x^2} + {y^2} + 1}} = \dfrac{{{{\left( {{x^2} + {y^2}} \right)}^2} - 2{x^2}{y^2} + 1}}{{{x^2} + {y^2} + 1}} = \dfrac{{{{\left( {1 + xy} \right)}^2} - 2{{\left( {xy} \right)}^2} + 1}}{{xy + 2}}\).

Đặt \(t = xy,\,t \in \left[ { - \dfrac{1}{3};\,\,1} \right]\), xét hàm số \(P = \dfrac{{ - {t^2} + 2t + 2}}{{t + 2}}\)

\(P' = \dfrac{{ - {t^2} - 4t + 2}}{{{{\left( {t + 2} \right)}^2}}}\); \(P' = 0 \Leftrightarrow t =  - 2 + \sqrt 6 \)

Mà \(P\left( { - \dfrac{1}{3}} \right) = \dfrac{{11}}{{15}}\); \(P\left( 1 \right) = 1\); \(P\left( { - 2 + \sqrt 6 } \right) = 6 - 2\sqrt 6 \)

Khi đó: \(m = P\left( { - \dfrac{1}{3}} \right) = \dfrac{{11}}{{15}}\); \(M = P\left( { - 2 + \sqrt 6 } \right) = 6 - 2\sqrt 6 \)

Vậy \(A = M + 15m = 17 - 2\sqrt 6 \).

Hướng dẫn giải:

- Tìm tập giá trị của tích \(xy\) dựa vào điều kiện bài cho.

- Biến đổi \(P\) chỉ làm xuất hiện tích \(xy\) rồi đặt \(t = xy\)

- Xét hàm số \(P\left( t \right)\) và tìm \(\max ,\min \), chú ý điều kiện của \(t\) tìm được từ đầu.

Câu hỏi khác