Cho \(\Delta ABC\) kẻ các đường cao \(BD\) và \(CE\) (\(D \in AC{\rm{ ; E}} \in {\rm{AB}}\)). \(BD\) và \(CE\) cắt nhau tại \(H.\)
Hệ thức nào dưới đây đúng?
Trả lời bởi giáo viên
Kẻ \(AH\) cắt \(BC\) tại \(N.\) Vì \(H\) là giao điểm hai đường cao \(BD,CE\) nên \(H\) là trực tâm tam giác \(ABC.\)
Suy ra: \(AH \bot BC\) hay \(AN \bot BC.\)
Xét \(\Delta BHN\) và \(\Delta BCD\) có: \(\widehat B\) chung và \(\widehat {HNB} = \widehat {BDC} = {90^0}\) nên \(\Delta BHN \backsim \Delta BCD \left( {g - g} \right)\)
Suy ra: \(\dfrac{{BH}}{{BC}} = \dfrac{{BN}}{{BD}} \Rightarrow BH.BD = BN.BC\) (1)
Xét \(\Delta CHN\) và \(\Delta CBE\) có: \(\widehat C\) chung và \(\widehat {HNC} = \widehat {BEC} = {90^0}\) nên \(\Delta CHN \backsim \Delta CBE \left( {g - g} \right)\)
Suy ra: \(\dfrac{{CH}}{{CB}} = \dfrac{{CN}}{{CE}} \Rightarrow CH.CE = CN.BC\) (2)
Từ (1) và (2) suy ra \(BH.BD + CH.CE = BN.BC + CN.BC\)\( = BC\left( {CN + BN} \right) = BC.BC = B{C^2}\).
Vậy \(BH.BD + CH.CE = B{C^2}.\)
Hướng dẫn giải:
Kẻ \(AH\) cắt \(BC\) tại \(N.\)
Chứng minh các cặp tam giác đồng dạng \(\Delta BHN \backsim \Delta BCD;\,\Delta CHN \backsim \Delta CBE\) để suy ra các hệ thức đúng về cạnh.