Cho \(a,\,\,b,\,\,c\) là độ dài ba cạnh của một tam giác. Mệnh đề nào sau đây không đúng?
Trả lời bởi giáo viên
Vì \(a,\,\,b,\,\,c\) là độ dài ba cạnh của một tam giác nên \(a > 0,\,\,b > 0,\,\,c > 0\).
Áp dụng bất đẳng thức tam giác ta có: \(\left\{ \begin{array}{l}a + b > c\\a + c > b\\b + c > a\end{array} \right.\)
+) Xét \({a^2} < ab + ac\)\( \Leftrightarrow {a^2} < a\left( {b + c} \right)\) \( \Leftrightarrow a < b + c\,\,\,\,\left( {tm} \right)\)
\( \Rightarrow \) Đáp án A đúng.
+) Xét \(ab + bc > {b^2}\) \( \Leftrightarrow b\left( {a + c} \right) > {b^2}\)\( \Leftrightarrow a + c > b\,\,\,\left( {tm} \right)\)
\( \Rightarrow \) Đáp án B đúng.
+) Xét \(b{}^2 + {c^2} < {a^2} + 2bc\)\( \Leftrightarrow b{}^2 + {c^2} - 2bc < {a^2}\)\( \Leftrightarrow {\left( {b - c} \right)^2} < {a^2}\)
\( \Leftrightarrow (b - c - a)(b-c+a)<0 \left( {tm} \right)\)
\( \Rightarrow \) Đáp án C đúng.
+) Xét \(b{}^2 + {c^2} > {a^2} + 2bc\)
\(\begin{array}{l} \Leftrightarrow b{}^2 + {c^2} - 2bc > {a^2}\\ \Leftrightarrow {\left( {b - c} \right)^2} > {a^2}\\ \Leftrightarrow |b - c| > a\left( {ktm} \right)\end{array}\)
\( \Rightarrow \) Đáp án D sai.
Hướng dẫn giải:
Biến đổi các mệnh đề và áp dụng bất đẳng thức tam giác.
\(a,\,\,b,\,\,c\) là độ dài ba cạnh của một tam giác thì \(a > 0,\,\,b > 0,\,\,c > 0\).
Bất đẳng thức tam giác: \(\left\{ \begin{array}{l}a + b > c\\a + c > b\\b + c > a\end{array} \right.\)