Đề bài
Bài 3. Trong một mạch dao động LC, tụ điện có điện dung là \(5\mu F\), cường độ tức thời của dòng điện là \(i = 0,05\sin 2000t(A).\) Tìm độ tự cảm và biểu thức cho điện tích của tụ.
Phương pháp giải - Xem chi tiết
+ Sử dụng biểu thức tính tần số góc: \(\omega=\dfrac{1}{\sqrt{LC}}\)
+ Vận dụng biểu thức: \(I_0=\omega q_0\)
+ Điện tích trên bản tụ chậm pha so với dòng điện một góc \(\dfrac{\pi}{2}\)
Lời giải chi tiết
Mạch dao động có \(C = 5(\mu F)\)
Dòng điện có biểu thức: \(i = 0,05\sin 2000t\)
Với \(I_0= 0,05\) (A) và \(\omega = 2000(rad/s) \Rightarrow {q_0} = {\displaystyle{{{I_0}} \over \omega }} = {\displaystyle{{0,05} \over {2000}}} = 2,{5.10^{ - 5}}(C)\)
Ta có \(\omega = {\displaystyle{1 \over {\sqrt {LC}}}} \Rightarrow {\omega ^2} = {\displaystyle{1 \over {LC}}} \Rightarrow L = {\displaystyle{1 \over {{\omega ^2}C}}} = {\displaystyle{1 \over {{{(2000)}^2}{{.5.10}^{ - 6}}}}} \Rightarrow L = 0,05(H).\)
Điện tích của tụ có biểu thức : (Vì q chậm pha so với \(i\) một góc \(\displaystyle{\pi \over 2}\))
\(q = {q_0}\sin (2000t - {\displaystyle{\pi \over 2}}) \Rightarrow q = 2,{5.10^{ - 5}}\sin (2000t - {\displaystyle{\pi \over 2}})(C)\) .