Trong không gian \(Oxyz\) cho điểm \(M\left( {2;1;5} \right)\). Mặt phẳng \((P)\) đi qua điểm \(M\) và cắt các trục \(Ox,Oy,Oz\) lần lượt tại các điểm \(A,B,C\) sao cho \(M\) là trực tâm của tam giác \(ABC.\) Tính khoảng cách từ điểm \(I\left( {1;2;3} \right)\) đến mặt phẳng \((P)\).
Trả lời bởi giáo viên
Vì \(M\) là trực tâm của tam giác \(ABC\)\( \Rightarrow \,\,OM \bot \left( {ABC} \right) \Rightarrow \,\,{\vec n_{\left( {ABC} \right)}} = \overrightarrow {OM} = \left( {2;1;5} \right)\)
Suy ra phương trình mặt phẳng \(\left( {ABC} \right)\) là \(2\left( {x - 2} \right) + y - 1 + 5\left( {z - 5} \right) = 0 \Leftrightarrow 2x + y + 5z - 30 = 0.\)
Khoảng cách từ điểm \(I\left( {1;2;3} \right)\) đến mặt phẳng (P) là \(d\left( {I;\left( P \right)} \right) = \frac{{\left| {2 + 2 + 15 - 30} \right|}}{{\sqrt {{2^2} + {1^2} + {5^2}} }} = \frac{{11}}{{\sqrt {30} }} = \frac{{11\sqrt {30} }}{{30}}.\)
Hướng dẫn giải:
Tứ diện vuông O.ABC với OA, OB, OC đôi một vuông góc và H là trực tâm của tam giác ABC thì OH vuông với với mặt phẳng (ABC)