Câu hỏi:
2 năm trước

Tìm điều kiện của tham số m để phương trình \(\left( {5{m^2} - 4} \right)x = 2m + x\) có nghiệm.

Trả lời bởi giáo viên

Đáp án đúng: d

Ta có:

\(\begin{array}{l}\,\,\,\,\,\,\left( {5{m^2} - 4} \right)x = 2m + x\\ \Leftrightarrow \left( {5{m^2} - 4} \right)x - 2m - x = 0\\ \Leftrightarrow \left( {5{m^2} - 5} \right)x - 2m = 0\end{array}\)

Phương trình trên có nghiệm

\(\begin{array}{l} \Leftrightarrow 5{m^2} - 5 \ne 0\\ \Leftrightarrow 5\left( {{m^2} - 1} \right) \ne 0\\ \Leftrightarrow {m^2} \ne 1\\ \Leftrightarrow m \ne  \pm 1\end{array}\)  

Hướng dẫn giải:

- Đưa phương trình về dạng phương trình bậc nhất một ẩn: ax + b = 0.

- Phương trình dạng ax + b = 0 có nghiệm \( \Leftrightarrow a \ne 0\).

Câu hỏi khác