Câu hỏi:
2 năm trước
Tìm điều kiện của tham số m để phương trình \(\left( {5{m^2} - 4} \right)x = 2m + x\) có nghiệm.
Trả lời bởi giáo viên
Đáp án đúng: d
Ta có:
\(\begin{array}{l}\,\,\,\,\,\,\left( {5{m^2} - 4} \right)x = 2m + x\\ \Leftrightarrow \left( {5{m^2} - 4} \right)x - 2m - x = 0\\ \Leftrightarrow \left( {5{m^2} - 5} \right)x - 2m = 0\end{array}\)
Phương trình trên có nghiệm
\(\begin{array}{l} \Leftrightarrow 5{m^2} - 5 \ne 0\\ \Leftrightarrow 5\left( {{m^2} - 1} \right) \ne 0\\ \Leftrightarrow {m^2} \ne 1\\ \Leftrightarrow m \ne \pm 1\end{array}\)
Hướng dẫn giải:
- Đưa phương trình về dạng phương trình bậc nhất một ẩn: ax + b = 0.
- Phương trình dạng ax + b = 0 có nghiệm \( \Leftrightarrow a \ne 0\).