Câu hỏi:
2 năm trước

Phương trình \(\sqrt {{x^2} - 2x + 10}  + \sqrt {6{x^2} - 12x + 31}  = 8\) có nghiệm là

Trả lời bởi giáo viên

Đáp án đúng: a

Ta có \(\sqrt {{x^2} - 2x + 10}  + \sqrt {6{x^2} - 12x + 31}  = 8\)\( \Leftrightarrow \sqrt {{{\left( {x - 1} \right)}^2} + 9}  + \sqrt {6{{\left( {x - 1} \right)}^2} + 25}  = 8\)

Nhận thấy \(\sqrt {{{\left( {x - 1} \right)}^2} + 9}  \ge 3;\sqrt {6{{\left( {x - 1} \right)}^2} + 25}  \ge 5\) nên \(\sqrt {{{\left( {x - 1} \right)}^2} + 9}  + \sqrt {6{{\left( {x - 1} \right)}^2} + 25}  \ge 3 + 5\)

\( \Leftrightarrow \sqrt {{{\left( {x - 1} \right)}^2} + 9}  + \sqrt {6{{\left( {x - 1} \right)}^2} + 25}  \ge 8\)

Dấu “=” xảy ra khi \(\left\{ \begin{array}{l}\sqrt {{{\left( {x - 1} \right)}^2} + 9}  = 3\\\sqrt {6{{\left( {x - 1} \right)}^2} + 25}  = 5\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x - 1 = 0\\x - 1 = 0\end{array} \right. \Rightarrow x = 1\)

Vậy phương trình đã cho có nghiệm duy nhất \(x = 1.\)

Câu hỏi khác