Trả lời bởi giáo viên
\(\begin{array}{l}\,\,\,\,\,\,\sin 3x - \sin x + \sin 2x = 0\\ \Leftrightarrow 2\cos 2x\sin x + 2\sin x\cos x = 0\\ \Leftrightarrow 2\sin x\left( {\cos 2x + \cos x} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}\sin x = 0\\\cos 2x = - \cos x = \cos \left( {\pi - x} \right)\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = k\pi \\2x = \pi - x + k2\pi \\2x = x - \pi + k2\pi \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = k\pi \\x = \dfrac{\pi }{3} + \dfrac{{k2\pi }}{3}\\x = - \pi + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = k\pi \\x = \dfrac{\pi }{3} + \dfrac{{k2\pi }}{3}\end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\end{array}\)
Vậy nghiệm của phương trình là: \(x = k\pi \), \(x = \dfrac{\pi }{3} + \dfrac{{k2\pi }}{3}\).
Hướng dẫn giải:
- Sử dụng công thức biến đổi tổng thành tích: \(\sin a - \sin b = 2\cos \dfrac{{a + b}}{2}\sin \dfrac{{a - b}}{2}\) và công thức nhân đôi \(\sin 2x = 2\sin x\cos x\).
- Đưa phương trình đã cho về dạng tích.
- Sử dụng biến đổi: \(\).
- Giải phương trình lượng giác cơ bản: \(\cos x = \cos \alpha \Leftrightarrow x = \pm \alpha + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\).