Câu hỏi:
2 năm trước

Giải phương trình \(\dfrac{1}{{x - 1 + \sqrt {{x^2} - 2x + 5} }} + \dfrac{1}{{x - 1 - \sqrt {{x^2} - 2x + 5} }} = 1\)

Trả lời bởi giáo viên

Đáp án đúng: d

\(\begin{array}{l}\dfrac{1}{{x - 1 + \sqrt {{x^2} - 2x + 5} }} + \dfrac{1}{{x - 1 - \sqrt {{x^2} - 2x + 5} }} = 1\\ \Leftrightarrow \dfrac{1}{{x - 1 + \sqrt {{{(x - 1)}^2} + 4} }} + \dfrac{1}{{x - 1 - \sqrt {{{(x - 1)}^2} + 4} }} = 1\end{array}\)

Đặt  \(x – 1 = t\)

\(\begin{array}{l}PT \Leftrightarrow \dfrac{1}{{t + \sqrt {{t^2} + 4} }} + \dfrac{1}{{t - \sqrt {{t^2} + 4} }} = 1\\\Leftrightarrow \dfrac{{t - \sqrt {{t^2} + 4}  + t + \sqrt {{t^2} + 4} }}{{(t + \sqrt {{t^2} + 4} )(t - \sqrt {{t^2} + 4} )}} = 1\\\Leftrightarrow \dfrac{{2t}}{{{t^2} - {t^2} - 4}} = 1\\ \Leftrightarrow \dfrac{{2t}}{{ - 4}} = 1\\ \Leftrightarrow t =  - 2\\ \Rightarrow x - 1 =  - 2 \Leftrightarrow x =  - 1.\end{array}\)

Thử lại thấy \(x=-1\) thỏa mãn phương trình.

Vậy phương trình có nghiệm duy nhất \(x = -1.\)

Hướng dẫn giải:

Biến đổi phương trình, đặt ẩn, quy đồng và rút gọn phân thức. Từ đó giải phương trình.

Câu hỏi khác