Giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(f\left( x \right) = \dfrac{{{x^2} + 4x + 5}}{{{x^2} + 3x + 3}}\) lần lượt là \(M\) và \(m\) thì:
Trả lời bởi giáo viên
Đặt \(f\left( x \right) = \dfrac{{{x^2} + 4x + 5}}{{{x^2} + 3x + 3}} = A\)
\(\begin{array}{l} \Leftrightarrow {x^2} + 4x + 5 = A\left( {{x^2} + 3x + 3} \right)\\ \Leftrightarrow {x^2} + 4x + 5 - A\left( {{x^2} + 3x + 3} \right) = 0\\ \Leftrightarrow {x^2} + 4x + 5 - A{x^2} - 3Ax - 3A = 0\\ \Leftrightarrow \left( {1 - A} \right){x^2} + \left( {4 - 3A} \right)x + 5 - 3A = 0\,\,\,\,\left( 1 \right)\end{array}\)
Phương trình \(\left( 1 \right)\) có nghiệm \( \Leftrightarrow \Delta \ge 0\)
\(\begin{array}{l}\Delta \ge 0 \Leftrightarrow {\left( {4 - 3A} \right)^2} - 4.\left( {1 - A} \right)\left( {5 - 3A} \right) \ge 0\\\, \Leftrightarrow \left( {16 - 24A + 9{A^2}} \right) - \left( {4 - 4A} \right)\left( {5 - 3A} \right) \ge 0\\\, \Leftrightarrow \left( {16 - 24A + 9{A^2}} \right) - \left( {20 - 12A - 20A + 12{A^2}} \right) \ge 0\\\, \Leftrightarrow 16 - 24A + 9{A^2} - 20 + 12A + 20A - 12{A^2} \ge 0\\\, \Leftrightarrow - 3{A^2} + 8A - 4 \ge 0\\\, \Leftrightarrow 3{A^2} - 8A + 4 \le 0\\\, \Leftrightarrow \left( {A - 2} \right)\left( {3A - 2} \right) \le 0\\ \Leftrightarrow \dfrac{2}{3} \le A \le 2\end{array}\)
+) \(A \ge \dfrac{2}{3} \Rightarrow Min\,A = \dfrac{2}{3}\)
\(A = \dfrac{2}{3} \Leftrightarrow \dfrac{{{x^2} + 4x + 5}}{{{x^2} + 3x + 3}} = \dfrac{2}{3}\)\( \Leftrightarrow 3{x^2} + 12x + 15 = 2{x^2} + 6x + 6\)\( \Leftrightarrow {x^2} + 6x + 9 = 0\)\( \Leftrightarrow x = - 3\)
+) \(A \le 2 \Rightarrow Max\,A = 2\)
\(A = 2 \Leftrightarrow \dfrac{{{x^2} + 4x + 5}}{{{x^2} + 3x + 3}} = 2\)\( \Leftrightarrow {x^2} + 4x + 5 = 2{x^2} + 6x + 6\)\( \Leftrightarrow {x^2} + 2x + 1 = 0\)\( \Leftrightarrow x = - 1\)
Vậy \(Min\,f\left( x \right) = Min\,A = \dfrac{2}{3} \Leftrightarrow x = - 1\); \(Max\,f\left( x \right) = Max\,A = 2 \Leftrightarrow x = - 1\)
Khi đó, ta có: \(\left\{ \begin{array}{l}M = 2\\m = \dfrac{2}{3}\end{array} \right.\)
\(M + m = \dfrac{8}{3}\) \( \Rightarrow \) Đáp án \(A\) sai.
\(Mm = \dfrac{4}{3}\) \( \Rightarrow \) Đáp án \(B\) sai.
\(\dfrac{M}{m} = 3\) \( \Rightarrow \) Đáp án \(C\) sai.
\(M - m = \dfrac{4}{3}\) \( \Rightarrow \) Đáp án\(D\) đúng.
Hướng dẫn giải:
Đặt: \(\dfrac{{{x^2} + 4x + 5}}{{{x^2} + 3x + 3}} = A\) \(\left( 1 \right)\)
Biến đổi \(\left( 1 \right)\)về dạng phương trình bậc hai và tìm điều kiện để \(\left( 1 \right)\) có nghiệm. Từ đó tìm được \(M\) và \(m\).