Cho phương trình \({x^2} - (2m - 3)x + {m^2} - 3m = 0\). Xác định m để phương trình có hai nghiệm \({x_1}\,\,;\,\,{x_2}\) thỏa mãn \(1 < {x_1} < {x_2} < 6\).
Trả lời bởi giáo viên
Xét phương trình \({x^2} - (2m - 3)x + {m^2} - 3m = 0\) có \(a = 1 \ne 0\) và \(\Delta = {(2m - 3)^2} - 4({m^2} - 3m) = 9 > 0\,\,\,\forall m\).
Phương trình luôn có hai nghiệm phân biệt\({x_1}\,\,;\,\,{x_2}\)
Áp dụng định lý Vi – ét ta có: \({x_1} + {x_2} = 2m - 3\,\,\,;\,\,{x_1}{x_2} = {m^2} - 3m\,\,\,.\)
Ta có:
\(\begin{array}{l}1 < {x_1} < {x_2} < 6 \\\Leftrightarrow \left\{ \begin{array}{l}({x_1} - 1)({x_2} - 1) > 0\\{x_1} + {x_2} > 1\\({x_1} - 6)({x_2} - 6) > 0\\{x_1} + {x_2} < 12\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}{x_1}{x_2} - ({x_1} + {x_2}) + 1 > 0\\{x_1} + {x_2} > 1\\{x_1}{x_2} - 6({x_1} + {x_2}) + 36 > 0\\{x_1} + {x_2} < 12\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}{m^2} - 3m - 2m + 3 + 1 > 0\\2m - 3 > 1\\{m^2} - 3m - 6(2m - 3) + 36 > 0\\2m - 3 < 12\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}{m^2} - 5m + 4 > 0\\2m > 4\\{m^2} - 15m + 54 > 0\\2m < 15\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m < 1\\m > 4\end{array} \right.\\m > 2\\\left[ \begin{array}{l}m < 6\\m > 9\end{array} \right.\\m < \dfrac{{15}}{2}\end{array} \right. \\\Leftrightarrow 4 < m < 6\end{array}\)
Hướng dẫn giải:
Sử dụng biểu thức \(\Delta \) để tìm điều kiện phương trình có 2 nghiệm. Biến đổi điều kiện của đề bài bằng cách sử dụng định lý Vi – ét biến đổi biểu thức theo \({x_1} + {x_2}\,\,;\,\,{x_1}{x_2}\). Từ đó tìm điều kiện của m.