Câu hỏi:
2 năm trước

Cho phương trình \({x^2} - 2\left( {m - 1} \right)x + 2m - 5 = 0\) (\(m\) là tham số). Tìm các giá trị của \(m\) để phương trình trên có 2 nghiệm \({x_1},\,\,{x_2}\) thỏa mãn \(\left( {x_1^2 - 2m{x_1} + 2m - 1} \right)\left( {{x_2} - 2} \right) \le 0.\)

Trả lời bởi giáo viên

Đáp án đúng: a

Xét phương trình \({x^2} - 2\left( {m - 1} \right)x + 2m - 5 = 0\) ta có:

\(\begin{array}{l}\Delta ' = {\left( {m - 1} \right)^2} - 2m + 5\\\,\,\,\,\,\,\, = {m^2} - 2m + 1 - 2m + 5\\\,\,\,\,\,\,\, = {m^2} - 4m + 4 + 2\\\,\,\,\,\,\,\, = {\left( {m - 2} \right)^2} + 2 > 0\,\,\,\forall m\end{array}\)

\( \Rightarrow \) Phương trình đã cho luôn có hai nghiệm phân biệt \({x_1},\,\,{x_2}\) với mọi \(m.\)

Áp dụng hệ thức Vi-et ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2\left( {m - 1} \right) = 2m - 2\\{x_1}{x_2} = 2m - 5\end{array} \right..\)

Vì \({x_1}\) là nghiệm của phương trình đã cho nên ta có:

\(\begin{array}{l}\,\,\,\,\,\,\,x_1^2 - 2\left( {m - 1} \right){x_1} + 2m - 5 = 0\\ \Leftrightarrow x_1^2 - 2m{x_1} + 2{x_1} + 2m - 5 = 0\\ \Leftrightarrow x_1^2 - 2m{x_1} + 2m - 1 + 2{x_1} - 4 = 0\\ \Leftrightarrow x_1^2 - 2m{x_1} + 2m - 1 =  - 2\left( {{x_1} - 2} \right)\end{array}\)

Theo đề bài ta có:

\(\begin{array}{l}\,\,\,\,\,\,\left( {x_1^2 - 2m{x_1} + 2m - 1} \right)\left( {{x_2} - 2} \right) \le 0\\ \Leftrightarrow  - 2\left( {{x_1} - 2} \right)\left( {{x_2} - 2} \right) \le 0\\ \Leftrightarrow \left( {{x_1} - 2} \right)\left( {{x_2} - 2} \right) \ge 0\\ \Leftrightarrow {x_1}{x_2} - 2\left( {{x_1} + {x_2}} \right) + 4 \ge 0\\ \Leftrightarrow 2m - 5 - 2\left( {2m - 2} \right) + 4 \ge 0\\ \Leftrightarrow 2m - 1 - 4m + 4 \ge 0\\ \Leftrightarrow  - 2m \ge  - 3\\ \Leftrightarrow m \le \dfrac{3}{2}\end{array}\)

Vậy \(m \le \dfrac{3}{2}\) thỏa mãn điều kiện bài toán.

Hướng dẫn giải:

Tìm điều kiện của \(m\) để phương trình đã cho có nghiệm.

Áp dụng hệ thức Vi-et và hệ thức bài cho để tìm \(m.\)

Câu hỏi khác