Câu hỏi:
2 năm trước
Cho hàm số \(f(x) = {\left( {\dfrac{1}{2}} \right)^x}{5^{{x^2}}}\) . Khẳng định nào sau đúng:
Trả lời bởi giáo viên
Đáp án đúng: c
Ta có
\(\begin{array}{l}f(x) > 1 \Leftrightarrow {\left( {\dfrac{1}{2}} \right)^x}{5^{{x^2}}} > 1 \Leftrightarrow {\log _2}\left[ {{{\left( {\dfrac{1}{2}} \right)}^x}{5^{{x^2}}}} \right] > {\log _2}1\\ \Leftrightarrow {x^2}{\log _2}5 + x{\log _2}\dfrac{1}{2} > 0 \Leftrightarrow {x^2}{\log _2}5 - x > 0\end{array}\)$ \Leftrightarrow x - {x^2}{\log _2}5 < 0$
Hướng dẫn giải:
Lấy logarit hai vế, biến đổi tương đương tìm ra đáp án đúng.