Các dạng toán về phép nhân và phép chia số tự nhiên (tiếp)

Sách kết nối tri thức với cuộc sống

Đổi lựa chọn

I. Bài tập về phép chia có dư

Phương pháp:

 Sử dụng định nghĩa của phép chia có dư và công thức:

$a = b.q + r\left( {0 < r < b} \right)$

Từ công thức trên suy ra : $b = \left( {a-r} \right):q;q = \left( {a-r} \right):b;$$r = a-b.q.$

Hay số bị chia = số chia x thương số + số dư

Số chia =(số bị chia – số dư) : thương số

Thương số = (số bị chia – số dư) : số chia

Số dư = số bị chia – số chia x thương số

II. Áp dụng tính chất của phép nhân và phép chia để tính nhanh

Phương pháp:

+ Muốn tìm số bị chia ta, ta lấy thương nhân với số chia.

+ Muốn tìm số chia, ta lấy số bị chia chia cho thương.

Ví dụ:

Tìm số tự nhiên \(x\) biết:

a) \(1236:x = 12\)

b) \(x:5 = 123\)

Giải:

a) \(1236:x = 12\)

\(\begin{array}{l}x = 1236:12\\x = 103\end{array}\)

b) \(x:5 = 123\)

\(\begin{array}{l}x = 123.5\\x = 615\end{array}\)