Câu hỏi:
2 năm trước

Trong mặt phẳng Oxyz, cho mặt phẳng \(\left( P \right):\,\,x + y + z - 1 = 0\) và mặt phẳng \(\left( Q \right):\,\,x - y = 0\). Tìm giao tuyến của hai mặt phẳng (P) và (Q).

Trả lời bởi giáo viên

Đáp án đúng: c

Gọi \(\Delta \) là giao tuyến của hai mặt phẳng (P) và (Q).

Tọa độ các giao điểm của hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) thỏa mãn hệ phương trình:

\(\left\{ \begin{array}{l}x + y + z - 1 = 0\\x - y = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = x\\z = 1 - x - y\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}y = x\\z = 1 - 2x\end{array} \right.\).

Cho \(x = 0 \Rightarrow \left\{ \begin{array}{l}y = 0\\z = 1\end{array} \right. \Rightarrow A\left( {0;0;1} \right) \in \Delta \).

Cho \(x = 1 \Rightarrow \left\{ \begin{array}{l}y = 1\\z =  - 1\end{array} \right.\) \( \Rightarrow B\left( {1;1; - 1} \right) \in \Delta \).

Ta có: \(\overrightarrow {AB}  = \left( {1;1; - 2} \right)\) là 1 VTCP của đường thẳng \(\Delta \).

\( \Rightarrow \) Phương trình đường thẳng \(\Delta \) có dạng: \(\left\{ \begin{array}{l}x = t\\y = t\\z = 1 - 2t\end{array} \right.\,\,\left( {t \in \mathbb{R}} \right)\),

Chọn \(t =  - 1\) ta có điểm \(C\left( { - 1; - 1;3} \right) \in \Delta \).

Vậy phương trình đường thẳng \(\Delta \) đi qua \(C\left( { - 1; - 1;3} \right)\) và có 1 VTCP \(\left( {1;1; - 2} \right)\) là: \(\dfrac{{x + 1}}{1} = \dfrac{{y + 1}}{1} = \dfrac{{z - 3}}{{ - 2}}\).

Hướng dẫn giải:

- Gọi \(\Delta \) là giao tuyến của hai mặt phẳng (P) và (Q).

- Tọa độ các giao điểm của hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) thỏa mãn hệ phương trình: \(\left\{ \begin{array}{l}x + y + z - 1 = 0\\x - y = 0\end{array} \right.\).

- Cho lần lượt \(x = 0,\,\,x = 1\) tìm tọa độ 2 điểm \(A,\,\,B \in \Delta \).

- Viết phương trình đường thẳng \(\Delta \) đi qua hai điểm A, B.

- Dựa vào các đáp án chọn điểm đi qua phù hợp và viết phương trình đường thẳng.

Câu hỏi khác