Câu hỏi:
2 năm trước

Tìm các giá trị của \(m\) để phương trình \({x^2} - 2\left( {m - 1} \right)x - m + 2 = 0\) có hai nghiệm trái dấu.

Trả lời bởi giáo viên

Đáp án đúng: b

Phương trình \({x^2} - 2\left( {m - 1} \right)x - m + 2 = 0\)$\left( {a = 1;b =  - 2\left( {m - 1} \right);c =  - m + 2} \right)$

Nên phương trình có hai nghiệm trái dấu khi $ac < 0 \Leftrightarrow 1.\left( { - m + 2} \right) < 0 \Leftrightarrow m > 2$

Vậy $m > 2$ là giá trị cần tìm.

Hướng dẫn giải:

Xét phương trình \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\). Khi đó phương trình có hai nghiệm trái dấu \( \Leftrightarrow ac < 0\).

Câu hỏi khác