Tia phân giác góc \(\widehat {BAD}\) của hình bình hành \(ABCD\) cắt các đường thẳng \(BC\) và \(DC\) lần lượt tại hai điểm \(M\) và \(N.\) Dựng ra phía ngoài hình bình hành \(ABCD\) tam giác cân \(MCO\) với \(\widehat {MOC} = \widehat {BAD}\). Khi đó:
Trả lời bởi giáo viên
Ta có \(BM//AD\) nên \(\widehat {BMA} = \widehat {MAD}.\)
Mặt khác \(AM\) là phân giác của \(\widehat {BAD}\) nên \(\widehat {BAM} = \widehat {MAD}.\)
Từ đó \(\widehat {BAM} = \widehat {AMB.}\)
Vậy \(\Delta ABM\) cân tại \(B.\) Suy ra \(BM = BA = DC.\)
Tam giác \(OMC\) cân tại \(O\) nên \(OM = OC.\)
Đặt \(\alpha = \widehat {BAD},\) ta có \(\widehat {OCD} = \widehat {BCD} + \widehat {OCM} = \alpha + \dfrac{1}{2}\left( {{{180}^0} - \alpha } \right) = {90^0} + \dfrac{\alpha }{2}\,\,\left( 1 \right).\)
Các góc \(\widehat {BMO},\,\widehat {OMC}\) kề bù nên
\(\widehat {BMO} = {180^0} - \,\widehat {OMC} = {180^0} - \,\widehat {OCM} = {90^0} + \dfrac{\alpha }{2}\,\,\left( 2 \right).\)
Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) suy ra \(\widehat {OCD} = \widehat {BMO}.\)
Xét hai tam giác \(\Delta OBM,\,\Delta ODC\) có \(\left\{ \begin{array}{l}\widehat {OCD} = \widehat {BMO}\\OM = OC\\BM = CD\end{array} \right.\) nên \(\Delta OBM = \Delta ODC\,\,\left( {c.g.c} \right).\)
Do đó \(\widehat {OBM} = \widehat {ODC}.\) Điều này chứng tỏ \(BOCD\) là tứ giác nội tiếp. Do đó bốn điểm \(B,\,O,\,C,\,D\) thuộc cùng một đường tròn.
Hướng dẫn giải:
Góc nội tiếp chắn nửa đường tròn là góc vuông.
Dấu hiệu nhận biết tứ giác nội tiếp:
+) Tứ giác có tổng hai góc đối diện bằng \({180^0}.\)
+) Tứ giác có hai đỉnh kề một cạnh cùng nhìn cạnh chứa hai đỉnh còn lại dưới một góc \(\alpha .\)
+) Tứ giác có bốn đỉnh cách đều một điểm, điểm đó là tâm của đường tròn ngoại tiếp tứ giác.
+) Tứ giác có góc ngoài tại một đỉnh bằng góc trong tại đỉnh đối của đỉnh đó.
Sử dụng dấu hiệu hai đỉnh kề nhau cùng nhìn cạnh đối diện các góc bằng nhau thì tứ giác đó là tứ giác nội tiếp.