Trả lời bởi giáo viên
Đáp án đúng: c
\(x + 4\sqrt x - 12 = 0\) (1)
ĐKXĐ: \(x \ge 0.\)
Đặt: \(\sqrt x = t\,\,\left( {t \ge 0} \right)\)
\(\left( 1 \right) \Leftrightarrow {t^2} + 4t - 12 = 0.\)
Có: \(\Delta ' = {2^2} + 12 = 16 > 0 \Rightarrow \) phương trình có hai nghiệm phân biệt: \(\left[ \begin{array}{l}{t_1} = - 2 + \sqrt {16} = 2\,\,\,\left( {tm} \right)\\{t_2} = - 2 - \sqrt {16} = - 6\,\,\,\left( {ktm} \right)\end{array} \right..\)
Với \(t = 2 \Rightarrow \sqrt x = 2 \Leftrightarrow x = 4\,\,\left( {tm} \right).\)
Vậy phương trình có nghiệm \(x = 4.\)
Hướng dẫn giải:
Đặt: \(\sqrt x = t\,\,\left( {t \ge 0} \right)\), khi đó đưa về được phương trình bậc hai: \({t^2} + 4t - 12 = 0\). Giải phương trình bậc hai ẩn \(t\) sau đó quay lại tìm được \(x\).